Answer :
Alright, students! Let's go through the first part of the question step by step.
### Question 1
Translate the point [tex]\((x, y)\)[/tex] by 3 units to the right and 2 units down. We need to write the function [tex]\(T(x, y)\)[/tex] to reflect this transformation.
#### Step 1: Translation to the right
To translate a point [tex]\(x\)[/tex] units to the right, we add to the [tex]\(x\)[/tex]-coordinate. Here, we need to translate 3 units to the right, so we add 3 to the [tex]\(x\)[/tex]-coordinate:
[tex]\[ x' = x + 3 \][/tex]
#### Step 2: Translation downward
To translate a point [tex]\(y\)[/tex] units down, we subtract from the [tex]\(y\)[/tex]-coordinate. Here, we need to translate 2 units down, so we subtract 2 from the [tex]\(y\)[/tex]-coordinate:
[tex]\[ y' = y - 2 \][/tex]
#### Combining Steps 1 and 2
The new coordinates [tex]\((x', y')\)[/tex] after the translation will be:
[tex]\[ (x', y') = (x + 3, y - 2) \][/tex]
Therefore, the function [tex]\(T\)[/tex] that represents this translation is given by:
[tex]\[ T(x, y) = (x + 3, y - 2) \][/tex]
So, the answer is:
[tex]\[ T(x, y) = (x + 3, y - 2) \][/tex]
### Question 1
Translate the point [tex]\((x, y)\)[/tex] by 3 units to the right and 2 units down. We need to write the function [tex]\(T(x, y)\)[/tex] to reflect this transformation.
#### Step 1: Translation to the right
To translate a point [tex]\(x\)[/tex] units to the right, we add to the [tex]\(x\)[/tex]-coordinate. Here, we need to translate 3 units to the right, so we add 3 to the [tex]\(x\)[/tex]-coordinate:
[tex]\[ x' = x + 3 \][/tex]
#### Step 2: Translation downward
To translate a point [tex]\(y\)[/tex] units down, we subtract from the [tex]\(y\)[/tex]-coordinate. Here, we need to translate 2 units down, so we subtract 2 from the [tex]\(y\)[/tex]-coordinate:
[tex]\[ y' = y - 2 \][/tex]
#### Combining Steps 1 and 2
The new coordinates [tex]\((x', y')\)[/tex] after the translation will be:
[tex]\[ (x', y') = (x + 3, y - 2) \][/tex]
Therefore, the function [tex]\(T\)[/tex] that represents this translation is given by:
[tex]\[ T(x, y) = (x + 3, y - 2) \][/tex]
So, the answer is:
[tex]\[ T(x, y) = (x + 3, y - 2) \][/tex]