Pascha is factoring the polynomial, which has four terms.

[tex]\[
3x^3 - 15x^2 + 8x - 40
\][/tex]
[tex]\[
3x^2(x - 5) + 8(x - 5)
\][/tex]

Which is the completely factored form of her polynomial?

A. [tex]\((3x^2 - 5)(x + 8)\)[/tex]

B. [tex]\((3x^2 - 8)(x + 5)\)[/tex]

C. [tex]\((3x^2 + 8)(x - 5)\)[/tex]

D. [tex]\((3x^2 + 5)(x - 8)\)[/tex]



Answer :

Alright, let's go through the step-by-step process of factoring the polynomial [tex]\(3x^3 - 15x^2 + 8x - 40\)[/tex].

1. Group the terms in pairs:

[tex]\[ 3x^3 - 15x^2 + 8x - 40 \Rightarrow (3x^3 - 15x^2) + (8x - 40) \][/tex]

2. Factor out the greatest common factor from each pair:

- For the first group, [tex]\(3x^3 - 15x^2\)[/tex]:
[tex]\[ 3x^2(x - 5) \][/tex]

- For the second group, [tex]\(8x - 40\)[/tex]:
[tex]\[ 8(x - 5) \][/tex]

So we have:
[tex]\[ 3x^2(x - 5) + 8(x - 5) \][/tex]

3. Factor out the common binomial factor [tex]\((x - 5)\)[/tex]:

Notice that [tex]\((x - 5)\)[/tex] is a common factor in both terms. Hence, we can factor it out:
[tex]\[ (x - 5)(3x^2 + 8) \][/tex]

Thus, the completely factored form of the polynomial [tex]\(3x^3 - 15x^2 + 8x - 40\)[/tex] is:

[tex]\[ (x - 5)(3x^2 + 8) \][/tex]

So, the correct answer is:

[tex]\[ \boxed{(3x^2 + 8)(x - 5)} \][/tex]