What is the product?

[tex]\[
\left(7x^2\right)\left(2x^3 + 5\right)\left(x^2 - 4x - 9\right)
\][/tex]

A. [tex]\(14x^5 - x^4 - 46x^3 - 58x^2 - 20x - 45\)[/tex]

B. [tex]\(14x^6 - 56x^5 - 91x^4 - 140x^3 - 315x^2\)[/tex]

C. [tex]\(14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2\)[/tex]

D. [tex]\(14x^{12} - 182x^6 + 35x^4 - 455x^2\)[/tex]



Answer :

To find the product of the three expressions [tex]\(\left(7x^2\right)\left(2x^3+5\right)\left(x^2-4x-9\right)\)[/tex], we will follow a systematic approach of multiplying them step by step.

First, let's multiply the first two expressions:

1. [tex]\(\left(7x^2\right) \times \left(2x^3 + 5\right)\)[/tex]:
[tex]\[ = 7x^2 \cdot 2x^3 + 7x^2 \cdot 5 = 14x^5 + 35x^2 \][/tex]

Next, we take the result of this multiplication and multiply it by the third expression:

2. [tex]\(\left(14x^5 + 35x^2\right) \times \left(x^2 - 4x - 9\right)\)[/tex]:

We apply the distributive property (also known as the FOIL method for polynomials) to multiply each term in the first polynomial by each term in the second polynomial.

[tex]\[ = \left(14x^5 + 35x^2\right) \left(x^2 - 4x - 9\right) \][/tex]

Expanding this, we get:

[tex]\[ = 14x^5 \cdot x^2 + 14x^5 \cdot (-4x) + 14x^5 \cdot (-9) \][/tex]
[tex]\[ + 35x^2 \cdot x^2 + 35x^2 \cdot (-4x) + 35x^2 \cdot (-9) \][/tex]

This simplifies to:

[tex]\[ = 14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2 \][/tex]

Hence, the product of the given expressions is:

[tex]\[ \boxed{14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2} \][/tex]