Answer :
Let's solve each part step by step:
### Part (c):
We need to evaluate the following expression:
[tex]\[ 5563.8 \cdot 104 + 39.1 \cdot 106 - 2.79 \cdot 107 \][/tex]
#### Calculations:
1. Multiply [tex]\( 5563.8 \)[/tex] by [tex]\( 104 \)[/tex]:
[tex]\[ 5563.8 \cdot 104 = 578651.2 \][/tex]
2. Multiply [tex]\( 39.1 \)[/tex] by [tex]\( 106 \)[/tex]:
[tex]\[ 39.1 \cdot 106 = 4144.6 \][/tex]
3. Multiply [tex]\( 2.79 \)[/tex] by [tex]\( 107 \)[/tex]:
[tex]\[ 2.79 \cdot 107 = 298.53 \][/tex]
4. Add the results from step 1 and step 2:
[tex]\[ 578651.2 + 4144.6 = 582795.8 \][/tex]
5. Subtract the result from step 3:
[tex]\[ 582795.8 - 298.53 = 582481.27 \][/tex]
The result for part (c) is:
[tex]\[ 582481.27 \][/tex]
### Part (1):
We need to evaluate the following expression:
[tex]\[ \frac{\left(3.12 \cdot 10^{-5} + 7.03 \cdot 10^{-1}\right) \cdot 8.3 \cdot 10^8}{4.32 \cdot 10} \][/tex]
#### Calculations:
1. Add [tex]\( 3.12 \cdot 10^{-5} \)[/tex] and [tex]\( 7.03 \cdot 10^{-1} \)[/tex]:
[tex]\[ 3.12 \cdot 10^{-5} + 7.03 \cdot 10^{-1} = 0.0000312 + 0.703 = 0.7030312 \][/tex]
2. Multiply the result from step 1 by [tex]\( 8.3 \cdot 10^8 \)[/tex]:
[tex]\[ 0.7030312 \cdot 8.3 \cdot 10^8 = 5.83915896 \cdot 10^8 \][/tex]
3. Divide the result from step 2 by [tex]\( 4.32 \cdot 10 \)[/tex]:
[tex]\[ \frac{5.83915896 \cdot 10^8}{4.32 \cdot 10} = \frac{5.83915896 \cdot 10^8}{43.2} = 13507312.407407409 \][/tex]
The result for part (1) is:
[tex]\[ 13507312.407407409 \][/tex]
Thus, the final answers are:
- For part (c): [tex]\( 582481.27 \)[/tex]
- For part (1): [tex]\( 13507312.407407409 \)[/tex]
### Part (c):
We need to evaluate the following expression:
[tex]\[ 5563.8 \cdot 104 + 39.1 \cdot 106 - 2.79 \cdot 107 \][/tex]
#### Calculations:
1. Multiply [tex]\( 5563.8 \)[/tex] by [tex]\( 104 \)[/tex]:
[tex]\[ 5563.8 \cdot 104 = 578651.2 \][/tex]
2. Multiply [tex]\( 39.1 \)[/tex] by [tex]\( 106 \)[/tex]:
[tex]\[ 39.1 \cdot 106 = 4144.6 \][/tex]
3. Multiply [tex]\( 2.79 \)[/tex] by [tex]\( 107 \)[/tex]:
[tex]\[ 2.79 \cdot 107 = 298.53 \][/tex]
4. Add the results from step 1 and step 2:
[tex]\[ 578651.2 + 4144.6 = 582795.8 \][/tex]
5. Subtract the result from step 3:
[tex]\[ 582795.8 - 298.53 = 582481.27 \][/tex]
The result for part (c) is:
[tex]\[ 582481.27 \][/tex]
### Part (1):
We need to evaluate the following expression:
[tex]\[ \frac{\left(3.12 \cdot 10^{-5} + 7.03 \cdot 10^{-1}\right) \cdot 8.3 \cdot 10^8}{4.32 \cdot 10} \][/tex]
#### Calculations:
1. Add [tex]\( 3.12 \cdot 10^{-5} \)[/tex] and [tex]\( 7.03 \cdot 10^{-1} \)[/tex]:
[tex]\[ 3.12 \cdot 10^{-5} + 7.03 \cdot 10^{-1} = 0.0000312 + 0.703 = 0.7030312 \][/tex]
2. Multiply the result from step 1 by [tex]\( 8.3 \cdot 10^8 \)[/tex]:
[tex]\[ 0.7030312 \cdot 8.3 \cdot 10^8 = 5.83915896 \cdot 10^8 \][/tex]
3. Divide the result from step 2 by [tex]\( 4.32 \cdot 10 \)[/tex]:
[tex]\[ \frac{5.83915896 \cdot 10^8}{4.32 \cdot 10} = \frac{5.83915896 \cdot 10^8}{43.2} = 13507312.407407409 \][/tex]
The result for part (1) is:
[tex]\[ 13507312.407407409 \][/tex]
Thus, the final answers are:
- For part (c): [tex]\( 582481.27 \)[/tex]
- For part (1): [tex]\( 13507312.407407409 \)[/tex]