What is the product?

[tex]\[ (3x - 6)(2x^2 - 7x + 1) \][/tex]

A. [tex]\(-12x^2 + 42x - 6\)[/tex]

B. [tex]\(-12x^2 + 21x + 6\)[/tex]

C. [tex]\(6x^3 - 33x^2 + 45x - 6\)[/tex]

D. [tex]\(6x^3 - 27x^2 - 39x + 6\)[/tex]



Answer :

To find the product of the given expressions:

[tex]\[ (3x - 6)\left(2x^2 - 7x + 1\right) \][/tex]

we need to multiply each term in the first polynomial by each term in the second polynomial, and then combine like terms.

### Step-by-step solution:

1. Distribute [tex]\(3x\)[/tex] to each term in the second polynomial:
[tex]\[ 3x \cdot 2x^2 = 6x^3 \][/tex]
[tex]\[ 3x \cdot (-7x) = -21x^2 \][/tex]
[tex]\[ 3x \cdot 1 = 3x \][/tex]

So, the result from [tex]\(3x\)[/tex] distribution is:
[tex]\[ 6x^3 - 21x^2 + 3x \][/tex]

2. Distribute [tex]\(-6\)[/tex] to each term in the second polynomial:
[tex]\[ -6 \cdot 2x^2 = -12x^2 \][/tex]
[tex]\[ -6 \cdot (-7x) = 42x \][/tex]
[tex]\[ -6 \cdot 1 = -6 \][/tex]

So, the result from [tex]\(-6\)[/tex] distribution is:
[tex]\[ -12x^2 + 42x - 6 \][/tex]

3. Combine all the results from steps 1 and 2:
[tex]\[ 6x^3 - 21x^2 + 3x - 12x^2 + 42x - 6 \][/tex]

4. Combine like terms:
[tex]\[ 6x^3 + (-21x^2 - 12x^2) + (3x + 42x) - 6 \][/tex]

Simplifying the like terms:
[tex]\[ 6x^3 - 33x^2 + 45x - 6 \][/tex]

Therefore, the product of the given expressions is:

[tex]\[ 6x^3 - 33x^2 + 45x - 6 \][/tex]

We can now identify the correct option from the multiple choices:

[tex]\[ \boxed{6x^3 - 33x^2 + 45x - 6} \][/tex]