The hypotenuse of a [tex]45^{\circ}-45^{\circ}-90^{\circ}[/tex] triangle measures [tex]22 \sqrt{2}[/tex] units. What is the length of one leg of the triangle?

A. 11 units
B. [tex]11 \sqrt{2}[/tex] units
C. 22 units
D. [tex]22 \sqrt{2}[/tex] units



Answer :

Let's solve the problem in a step-by-step manner:

Given:
- The hypotenuse of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle measures [tex]\( 22 \sqrt{2} \)[/tex] units.

In a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle, the sides have a specific ratio relative to each other. The legs of such a triangle are equal, and the hypotenuse is [tex]\( \sqrt{2} \)[/tex] times the length of each leg.

To find the length of one of the legs, we use the property of this special triangle:

1. Let the length of each leg be [tex]\( x \)[/tex].
2. Since the hypotenuse is [tex]\( \sqrt{2} \)[/tex] times the leg, we have:
[tex]\[ \text{Hypotenuse} = x \sqrt{2} \][/tex]
3. We know the hypotenuse is [tex]\( 22 \sqrt{2} \)[/tex] units, so:
[tex]\[ 22 \sqrt{2} = x \sqrt{2} \][/tex]
4. To find [tex]\( x \)[/tex], we divide both sides of the equation by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ x = \frac{22 \sqrt{2}}{\sqrt{2}} \][/tex]
5. Simplify the right-hand side:
[tex]\[ x = 22 \][/tex]

Thus, the length of one leg of the triangle is [tex]\( 22 \)[/tex] units.

Therefore, the correct option is:
- 22 units