Answer :
Certainly! Let's find the volume of a cone given the radius [tex]\( r = 4 \)[/tex], height [tex]\( h = 8 \)[/tex], and using the constant [tex]\( \pi = 3.14 \)[/tex].
We use the formula for the volume of a cone:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
1. Substitute the values into the formula:
[tex]\[ V = \frac{1}{3} \cdot 3.14 \cdot 4^2 \cdot 8 \][/tex]
2. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ 4^2 = 16 \][/tex]
3. Multiply [tex]\( \pi \)[/tex] by [tex]\( r^2 \)[/tex]:
[tex]\[ 3.14 \cdot 16 = 50.24 \][/tex]
4. Multiply this result by the height, [tex]\( h \)[/tex]:
[tex]\[ 50.24 \cdot 8 = 401.92 \][/tex]
5. Finally, divide by 3 to get the volume:
[tex]\[ V = \frac{401.92}{3} = 133.97333333333333 \][/tex]
6. Round this result to the nearest hundredths place:
[tex]\[ V \approx 133.97 \][/tex]
Therefore, the volume of the cone is approximately 133.97 cubic units.
Among the given options, the correct is:
[tex]\[ 133.97 \text{ cubic units} \][/tex]
We use the formula for the volume of a cone:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
1. Substitute the values into the formula:
[tex]\[ V = \frac{1}{3} \cdot 3.14 \cdot 4^2 \cdot 8 \][/tex]
2. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ 4^2 = 16 \][/tex]
3. Multiply [tex]\( \pi \)[/tex] by [tex]\( r^2 \)[/tex]:
[tex]\[ 3.14 \cdot 16 = 50.24 \][/tex]
4. Multiply this result by the height, [tex]\( h \)[/tex]:
[tex]\[ 50.24 \cdot 8 = 401.92 \][/tex]
5. Finally, divide by 3 to get the volume:
[tex]\[ V = \frac{401.92}{3} = 133.97333333333333 \][/tex]
6. Round this result to the nearest hundredths place:
[tex]\[ V \approx 133.97 \][/tex]
Therefore, the volume of the cone is approximately 133.97 cubic units.
Among the given options, the correct is:
[tex]\[ 133.97 \text{ cubic units} \][/tex]