The radius of a cone can be found using the formula [tex]r=\sqrt{\frac{3V}{\pi h}}[/tex], where [tex]V[/tex] stands for the volume of the cone and [tex]h[/tex] stands for the height.

If [tex]r = 4[/tex], [tex]h = 8[/tex], and [tex]\pi = 3.14[/tex], find the volume ([tex]V[/tex]). Round the answer to the nearest hundredth.

A. 66.99 cubic units
B. 3,365.41 cubic units
C. 133.97 cubic units
D. 33.49 cubic units



Answer :

Certainly! Let's find the volume of a cone given the radius [tex]\( r = 4 \)[/tex], height [tex]\( h = 8 \)[/tex], and using the constant [tex]\( \pi = 3.14 \)[/tex].

We use the formula for the volume of a cone:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]

1. Substitute the values into the formula:
[tex]\[ V = \frac{1}{3} \cdot 3.14 \cdot 4^2 \cdot 8 \][/tex]

2. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ 4^2 = 16 \][/tex]

3. Multiply [tex]\( \pi \)[/tex] by [tex]\( r^2 \)[/tex]:
[tex]\[ 3.14 \cdot 16 = 50.24 \][/tex]

4. Multiply this result by the height, [tex]\( h \)[/tex]:
[tex]\[ 50.24 \cdot 8 = 401.92 \][/tex]

5. Finally, divide by 3 to get the volume:
[tex]\[ V = \frac{401.92}{3} = 133.97333333333333 \][/tex]

6. Round this result to the nearest hundredths place:
[tex]\[ V \approx 133.97 \][/tex]

Therefore, the volume of the cone is approximately 133.97 cubic units.

Among the given options, the correct is:
[tex]\[ 133.97 \text{ cubic units} \][/tex]