Solve the absolute value inequality for [tex]x[/tex]:
[tex]\[2|2x-4|\ \textgreater \ 8\][/tex]

Select one:
a. [tex]-2\ \textless \ x\ \textless \ 10[/tex]
b. [tex]x\ \textless \ 0 \text{ or } x\ \textgreater \ 4[/tex]
c. [tex]x\ \textless \ -2 \text{ or } x\ \textgreater \ 10[/tex]
d. [tex]0\ \textless \ x\ \textless \ 4[/tex]



Answer :

To solve the absolute value inequality [tex]\( 2|2x - 4| > 8 \)[/tex], follow these steps:

1. Isolate the absolute value expression:
[tex]\[ 2|2x - 4| > 8 \][/tex]
Divide both sides by 2:
[tex]\[ |2x - 4| > 4 \][/tex]

2. Interpret the absolute value inequality:
The inequality [tex]\( |2x - 4| > 4 \)[/tex] means that the expression inside the absolute value, [tex]\( 2x - 4 \)[/tex], is either greater than 4 or less than -4.

Therefore, we have two cases to consider:
[tex]\[ 2x - 4 > 4 \quad \text{or} \quad 2x - 4 < -4 \][/tex]

3. Solve each case separately:

- Case 1: [tex]\( 2x - 4 > 4 \)[/tex]
[tex]\[ 2x - 4 > 4 \][/tex]
Add 4 to both sides:
[tex]\[ 2x > 8 \][/tex]
Divide both sides by 2:
[tex]\[ x > 4 \][/tex]

- Case 2: [tex]\( 2x - 4 < -4 \)[/tex]
[tex]\[ 2x - 4 < -4 \][/tex]
Add 4 to both sides:
[tex]\[ 2x < 0 \][/tex]
Divide both sides by 2:
[tex]\[ x < 0 \][/tex]

4. Combine the results:
The solutions to the inequality [tex]\( 2|2x - 4| > 8 \)[/tex] are [tex]\( x > 4 \)[/tex] and [tex]\( x < 0 \)[/tex].

Thus, the complete solution set is:
[tex]\[ x < 0 \quad \text{or} \quad x > 4 \][/tex]

5. Evaluate the answer choices and select the correct one:
a. [tex]\( -2 < x < 10 \)[/tex]: This is incorrect.

b. [tex]\( x < 0 \)[/tex] or [tex]\( x > 4 \)[/tex]: This matches our solution.

c. [tex]\( x < -2 \)[/tex] or [tex]\( x > 10 \)[/tex]: This is incorrect.

d. [tex]\( 0 < x < 4 \)[/tex]: This is incorrect.

Therefore, the correct answer is:
b. [tex]\( x < 0 \)[/tex] or [tex]\( x > 4 \)[/tex]