Solve the absolute value inequality for [tex]\( x \)[/tex]:
[tex]\[ |x-2| \leq 9 \][/tex]

Select one:
a. [tex]\( -7 \leq x \leq 7 \)[/tex]
b. [tex]\( -7 \leq x \leq 11 \)[/tex]
c. [tex]\( -912 \leq x \leq 912 \)[/tex]
d. [tex]\( x \ \textless \ -7 \)[/tex] or [tex]\( x \ \textgreater \ 11 \)[/tex]



Answer :

To solve the inequality [tex]\( |x - 2| \leq 9 \)[/tex], we need to break it down into two separate inequalities based on the definition of absolute value. The absolute value inequality [tex]\( |x - 2| \leq 9 \)[/tex] translates to:

[tex]\[ -9 \leq x - 2 \leq 9 \][/tex]

This compound inequality can be split into two simpler inequalities:

1. [tex]\( x - 2 \leq 9 \)[/tex]
2. [tex]\( x - 2 \geq -9 \)[/tex]

Let's solve each of these inequalities separately.

### Solving [tex]\( x - 2 \leq 9 \)[/tex]:
Add 2 to both sides of the inequality:

[tex]\[ x - 2 + 2 \leq 9 + 2 \][/tex]

Simplifying this gives:

[tex]\[ x \leq 11 \][/tex]

### Solving [tex]\( x - 2 \geq -9 \)[/tex]:
Add 2 to both sides of the inequality:

[tex]\[ x - 2 + 2 \geq -9 + 2 \][/tex]

Simplifying this gives:

[tex]\[ x \geq -7 \][/tex]

### Combining the Inequalities:
Now we combine the results of the two inequalities:

[tex]\[ -7 \leq x \leq 11 \][/tex]

Hence, the solution to the inequality [tex]\( |x - 2| \leq 9 \)[/tex] is:

[tex]\[ -7 \leq x \leq 11 \][/tex]

So, the correct answer is:

b. [tex]\( -7 \leq x \leq 11 \)[/tex]