Solve the absolute value inequality for [tex]\( x \)[/tex]:

[tex]\[ |2x - 3| \leq 9 \][/tex]

Select one:

a. [tex]\( -3 \leq x \leq -6 \)[/tex]

b. [tex]\( -3 \leq x \leq 6 \)[/tex]

c. [tex]\( x \leq -3 \)[/tex] or [tex]\( x \geq 6 \)[/tex]

d. [tex]\( -12 \leq x \leq 24 \)[/tex]



Answer :

To solve the absolute value inequality [tex]\(|2x - 3| \leq 9\)[/tex], we need to understand the properties of absolute values. Specifically, the expression [tex]\(|A| \leq B\)[/tex] implies that [tex]\(-B \leq A \leq B\)[/tex].

Let's apply this property step-by-step.

1. Express the Inequality Without Absolute Value:

[tex]\[ |2x - 3| \leq 9 \implies -9 \leq 2x - 3 \leq 9 \][/tex]

2. Break it into Two Separate Inequalities:

We now have two inequalities:
[tex]\[ -9 \leq 2x - 3 \quad \text{and} \quad 2x - 3 \leq 9 \][/tex]

3. Solve Each Inequality for [tex]\(x\)[/tex]:

- For [tex]\(-9 \leq 2x - 3\)[/tex]:

[tex]\[ -9 \leq 2x - 3 \][/tex]
Add 3 to both sides:
[tex]\[ -9 + 3 \leq 2x \][/tex]
Simplify:
[tex]\[ -6 \leq 2x \][/tex]
Divide both sides by 2:
[tex]\[ -3 \leq x \][/tex]

- For [tex]\(2x - 3 \leq 9\)[/tex]:

[tex]\[ 2x - 3 \leq 9 \][/tex]
Add 3 to both sides:
[tex]\[ 2x \leq 9 + 3 \][/tex]
Simplify:
[tex]\[ 2x \leq 12 \][/tex]
Divide both sides by 2:
[tex]\[ x \leq 6 \][/tex]

4. Combine the Results:

Combining the inequalities, we get:
[tex]\[ -3 \leq x \leq 6 \][/tex]

Thus, the solution set for the inequality [tex]\(|2x - 3| \leq 9\)[/tex] is [tex]\(-3 \leq x \leq 6\)[/tex].

Among the given options, the correct one is:

b. [tex]\(-3 \leq x \leq 6\)[/tex]