Solve the absolute value inequality for [tex]\( x \)[/tex]:

[tex]\[ |2x + 5| \geq 15 \][/tex]

Select one:
a. [tex]\(-\frac{5}{2} \leq x \leq 20\)[/tex]
b. [tex]\(-10 \ \textless \ x \ \textless \ 5\)[/tex]
c. [tex]\(x \geq 5\)[/tex] or [tex]\(x \leq -10\)[/tex]
d. [tex]\(x \geq -5\)[/tex] or [tex]\(x \leq 10\)[/tex]



Answer :

To solve the absolute value inequality [tex]\(|2x + 5| \geq 15\)[/tex], we need to break this down into two separate inequalities, since absolute value inequalities [tex]\(|A| \geq B\)[/tex] mean:
[tex]\[ A \geq B \quad \text{or} \quad A \leq -B \][/tex]

Let’s break it down step-by-step:

1. First Inequality:
[tex]\[ 2x + 5 \geq 15 \][/tex]
Subtract 5 from both sides:
[tex]\[ 2x \geq 10 \][/tex]
Divide both sides by 2:
[tex]\[ x \geq 5 \][/tex]

2. Second Inequality:
[tex]\[ 2x + 5 \leq -15 \][/tex]
Subtract 5 from both sides:
[tex]\[ 2x \leq -20 \][/tex]
Divide both sides by 2:
[tex]\[ x \leq -10 \][/tex]

Now, we combine the solutions from both inequalities. The solution to the absolute value inequality [tex]\(|2x + 5| \geq 15\)[/tex] is:
[tex]\[ x \geq 5 \quad \text{or} \quad x \leq -10 \][/tex]

Given the choices:
a. [tex]\(-\frac{5}{2} \leq x \leq 20\)[/tex]
b. [tex]\(-10 < x < 5\)[/tex]
c. [tex]\(x \geq 5 \quad \text{or} \quad x \leq -10\)[/tex]
d. [tex]\(x \geq -5 \quad \text{or} \quad x \leq 10\)[/tex]

The correct answer is:
c. [tex]\(x \geq 5 \quad \text{or} \quad x \leq -10\)[/tex]