Solve the absolute value inequality for [tex]\( x \)[/tex]:

[tex]\[ 4|5x - 1| - 2 \ \textgreater \ 14 \][/tex]

Select one:
a. [tex]\( \frac{-3}{5} \ \textless \ x \ \textless \ 1 \)[/tex]
b. [tex]\( x \ \textless \ \frac{-3}{5} \)[/tex] or [tex]\( x \ \textgreater \ 1 \)[/tex]
c. [tex]\( x \ \textless \ \frac{4}{5} \)[/tex] or [tex]\( x \ \textgreater \ \frac{-2}{5} \)[/tex]
d. [tex]\( 0 \ \textless \ x \ \textless \ 3 \)[/tex]



Answer :

To solve the absolute value inequality [tex]\( 4|5x - 1| - 2 > 14 \)[/tex], we will proceed step-by-step to isolate [tex]\( x \)[/tex] and find its range.

1. Isolate the absolute value expression:

Start by adding 2 to both sides of the inequality:

[tex]\[ 4|5x - 1| - 2 + 2 > 14 + 2 \][/tex]

Simplifies to:

[tex]\[ 4|5x - 1| > 16 \][/tex]

2. Divide both sides by 4:

[tex]\[ |5x - 1| > 4 \][/tex]

3. Break this absolute value inequality into two separate inequalities:

[tex]\[ 5x - 1 > 4 \quad \text{or} \quad 5x - 1 < -4 \][/tex]

4. Solve each of these inequalities separately:

- For the first inequality [tex]\( 5x - 1 > 4 \)[/tex]:

[tex]\[ 5x - 1 > 4 \][/tex]

Add 1 to both sides:

[tex]\[ 5x > 5 \][/tex]

Divide both sides by 5:

[tex]\[ x > 1 \][/tex]

- For the second inequality [tex]\( 5x - 1 < -4 \)[/tex]:

[tex]\[ 5x - 1 < -4 \][/tex]

Add 1 to both sides:

[tex]\[ 5x < -3 \][/tex]

Divide both sides by 5:

[tex]\[ x < -\frac{3}{5} \][/tex]

5. Combine the solutions:

The solution to the inequality [tex]\( |5x - 1| > 4 \)[/tex] is the union of the solutions from the two inequalities:

[tex]\[ x < -\frac{3}{5} \quad \text{or} \quad x > 1 \][/tex]

Thus, the correct answer is:
b. [tex]\( x < -\frac{3}{5} \)[/tex] or [tex]\( x > 1 \)[/tex]