The Distance Formula

Question 10 of 10

If [tex]\( A = (7, 6) \)[/tex] and [tex]\( R = (3, 12) \)[/tex], what is the length of [tex]\( \overline{AR} \)[/tex]?

A. 4 units
B. [tex]\( \sqrt{R} \)[/tex]
C. 6 units
D. 5 units



Answer :

To find the length of the line segment, denoted as [tex]\(\overline{AB}\)[/tex], between two points [tex]\( A = (7, -1) \)[/tex] and [tex]\( B = (3, 12) \)[/tex], we use the Distance Formula. The Distance Formula is given by:

[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Here, the coordinates of the two points are:
- Point [tex]\( A \)[/tex] has coordinates [tex]\((x_1, y_1) = (7, -1)\)[/tex]
- Point [tex]\( B \)[/tex] has coordinates [tex]\((x_2, y_2) = (3, 12)\)[/tex]

Now, substituting in the coordinates of points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:

[tex]\[ \text{Distance} = \sqrt{(3 - 7)^2 + (12 + 1)^2} \][/tex]

First, calculate the differences in the x-coordinates and y-coordinates:

[tex]\[ x_2 - x_1 = 3 - 7 = -4 \][/tex]
[tex]\[ y_2 - y_1 = 12 - (-1) = 12 + 1 = 13 \][/tex]

Next, square these differences:

[tex]\[ (-4)^2 = 16 \][/tex]
[tex]\[ 13^2 = 169 \][/tex]

Then, add the squared differences:

[tex]\[ 16 + 169 = 185 \][/tex]

Finally, take the square root of the sum:

[tex]\[ \sqrt{185} \approx 13.601 \][/tex]

Therefore, the length of [tex]\(\overline{AB}\)[/tex] is approximately [tex]\( 13.601 \)[/tex] units.