Answer :
Certainly! Let's go through the values step by step. These are the fractions of atoms that are still radioactive after [tex]\( n \)[/tex] half-life cycles:
1. For [tex]\( n = 1 \)[/tex]:
[tex]\[ A = 0.5 \][/tex]
2. For [tex]\( n = 2 \)[/tex]:
[tex]\[ B = 0.25 \][/tex]
3. For [tex]\( n = 3 \)[/tex]:
[tex]\[ C = 0.125 \][/tex]
4. For [tex]\( n = 6 \)[/tex]:
[tex]\[ D = 0.015625 \][/tex]
5. For [tex]\( n = 8 \)[/tex]:
[tex]\[ E = 0.00390625 \][/tex]
Now, let's fill in the table with these values.
[tex]\[ \begin{array}{l} A = 0.5 \\ B = 0.25 \\ C = 0.125 \\ D = 0.015625 \\ E = 0.00390625 \end{array} \][/tex]
[tex]\[ \begin{tabular}{|c|c|} \hline \begin{tabular}{c} Time-Half-Life \\ Cycles, $n$ \end{tabular} & $0.5^{ n }$ \\ \hline Initial & 1 \\ \hline 1 & 0.5 \\ \hline 2 & 0.25 \\ \hline 3 & 0.125 \\ \hline 4 & 0.0625 \\ \hline 5 & 0.03125 \\ \hline 6 & 0.015625 \\ \hline 7 & 0.0078125 \\ \hline 8 & 0.00390625 \\ \hline \end{tabular} \][/tex]
This completes the table and provides the fractions of radioactive atoms remaining after each specified number of half-life cycles.
1. For [tex]\( n = 1 \)[/tex]:
[tex]\[ A = 0.5 \][/tex]
2. For [tex]\( n = 2 \)[/tex]:
[tex]\[ B = 0.25 \][/tex]
3. For [tex]\( n = 3 \)[/tex]:
[tex]\[ C = 0.125 \][/tex]
4. For [tex]\( n = 6 \)[/tex]:
[tex]\[ D = 0.015625 \][/tex]
5. For [tex]\( n = 8 \)[/tex]:
[tex]\[ E = 0.00390625 \][/tex]
Now, let's fill in the table with these values.
[tex]\[ \begin{array}{l} A = 0.5 \\ B = 0.25 \\ C = 0.125 \\ D = 0.015625 \\ E = 0.00390625 \end{array} \][/tex]
[tex]\[ \begin{tabular}{|c|c|} \hline \begin{tabular}{c} Time-Half-Life \\ Cycles, $n$ \end{tabular} & $0.5^{ n }$ \\ \hline Initial & 1 \\ \hline 1 & 0.5 \\ \hline 2 & 0.25 \\ \hline 3 & 0.125 \\ \hline 4 & 0.0625 \\ \hline 5 & 0.03125 \\ \hline 6 & 0.015625 \\ \hline 7 & 0.0078125 \\ \hline 8 & 0.00390625 \\ \hline \end{tabular} \][/tex]
This completes the table and provides the fractions of radioactive atoms remaining after each specified number of half-life cycles.