Recall that your hypothesis is that these values are the fraction of atoms that are still radioactive after [tex]\( n \)[/tex] half-life cycles. Record the values in the appropriate blanks.

[tex]\[
\begin{array}{l}
A= \\
B= \\
C= \\
D= \\
E=
\end{array}
\][/tex]

[tex]\[
\begin{tabular}{|c|c|}
\hline
\begin{tabular}{c}
Time-Half-Life Cycles, \( n \)
\end{tabular} & \( 0.5^{ n } \) \\
\hline
Initial & 1 \\
\hline
1 & A \\
\hline
2 & B \\
\hline
3 & C \\
\hline
4 & 0.0625 \\
\hline
5 & 0.03125 \\
\hline
6 & D \\
\hline
7 & 0.0078125 \\
\hline
8 & E \\
\hline
\end{tabular}
\][/tex]



Answer :

Certainly! Let's go through the values step by step. These are the fractions of atoms that are still radioactive after [tex]\( n \)[/tex] half-life cycles:

1. For [tex]\( n = 1 \)[/tex]:
[tex]\[ A = 0.5 \][/tex]
2. For [tex]\( n = 2 \)[/tex]:
[tex]\[ B = 0.25 \][/tex]
3. For [tex]\( n = 3 \)[/tex]:
[tex]\[ C = 0.125 \][/tex]
4. For [tex]\( n = 6 \)[/tex]:
[tex]\[ D = 0.015625 \][/tex]
5. For [tex]\( n = 8 \)[/tex]:
[tex]\[ E = 0.00390625 \][/tex]

Now, let's fill in the table with these values.

[tex]\[ \begin{array}{l} A = 0.5 \\ B = 0.25 \\ C = 0.125 \\ D = 0.015625 \\ E = 0.00390625 \end{array} \][/tex]

[tex]\[ \begin{tabular}{|c|c|} \hline \begin{tabular}{c} Time-Half-Life \\ Cycles, $n$ \end{tabular} & $0.5^{ n }$ \\ \hline Initial & 1 \\ \hline 1 & 0.5 \\ \hline 2 & 0.25 \\ \hline 3 & 0.125 \\ \hline 4 & 0.0625 \\ \hline 5 & 0.03125 \\ \hline 6 & 0.015625 \\ \hline 7 & 0.0078125 \\ \hline 8 & 0.00390625 \\ \hline \end{tabular} \][/tex]

This completes the table and provides the fractions of radioactive atoms remaining after each specified number of half-life cycles.