Solve the compound inequality for [tex] x [/tex]:

[tex]\[ 8 \ \textgreater \ 3x - 1 \ \textgreater \ 5 \][/tex]

Select one:

a. [tex]\[ 12 \ \textless \ x \ \textless \ 28 \][/tex]

b. [tex]\[ 27 \ \textgreater \ x \ \textgreater \ 18 \][/tex]

c. [tex]\[ 3 \ \textgreater \ x \ \textgreater \ 2 \][/tex]

d. [tex]\[ \frac{7}{3} \ \textgreater \ x \ \textgreater \ \frac{4}{3} \][/tex]



Answer :

To solve the compound inequality [tex]\(8 > 3x - 1 > 5\)[/tex], we need to break it down into two separate inequalities and solve each one individually.

1. First Inequality: [tex]\(8 > 3x - 1\)[/tex]

- Start with the inequality:
[tex]\[ 8 > 3x - 1 \][/tex]
- Add 1 to both sides of the inequality to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 8 + 1 > 3x \implies 9 > 3x \][/tex]
- Divide both sides by 3:
[tex]\[ \frac{9}{3} > x \implies 3 > x \][/tex]

2. Second Inequality: [tex]\(3x - 1 > 5\)[/tex]

- Start with the inequality:
[tex]\[ 3x - 1 > 5 \][/tex]
- Add 1 to both sides of the inequality to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 3x - 1 + 1 > 5 + 1 \implies 3x > 6 \][/tex]
- Divide both sides by 3:
[tex]\[ \frac{3x}{3} > \frac{6}{3} \implies x > 2 \][/tex]

Now, combine the results of the two inequalities. We have:
[tex]\[ 3 > x \quad \text{and} \quad x > 2 \][/tex]

This can be written as:
[tex]\[ 3 > x > 2 \][/tex]

Among the given options, the correct selection is:
c. [tex]\(3 > x > 2\)[/tex]