A [tex]$2.18 \cdot 10^{-8} F$[/tex] capacitor has plates separated by [tex]$3.89 \cdot 10^{-8} m$[/tex]. What is the area of the plates?

[tex]
\begin{array}{c}
{[?] \cdot 10^{[?]} \, m^2} \\
\text{Hint: } C = \frac{\varepsilon_0 A}{d} \\
\varepsilon_0 = 8.85 \cdot 10^{-12} \, \frac{C^2}{N \cdot m^2}
\end{array}
[/tex]

Coefficient:
Exponent:
[tex]\square \quad \square[/tex]



Answer :

Let's solve this problem step-by-step to determine the area of the capacitor plates using the given values and the formula provided:

1. Given Information:
- Capacitance, [tex]\( C = 2.18 \cdot 10^{-8} \, \text{F} \)[/tex]
- Separation distance between the plates, [tex]\( d = 3.89 \cdot 10^{-8} \, \text{m} \)[/tex]
- Vacuum permittivity, [tex]\( \varepsilon_0 = 8.85 \cdot 10^{-12} \, \text{F/m} \)[/tex]

2. Formula to Use:
The relationship between capacitance [tex]\( C \)[/tex], plate area [tex]\( A \)[/tex], plate separation distance [tex]\( d \)[/tex], and vacuum permittivity [tex]\( \varepsilon_0 \)[/tex] is given by:
[tex]\[ C = \frac{\varepsilon_0 \cdot A}{d} \][/tex]

3. Rearrange the Formula to Solve for [tex]\( A \)[/tex]:
To find the area [tex]\( A \)[/tex], we rearrange the equation:
[tex]\[ A = \frac{C \cdot d}{\varepsilon_0} \][/tex]

4. Substitute the Given Values:

[tex]\[ A = \frac{(2.18 \cdot 10^{-8} \, \text{F}) \cdot (3.89 \cdot 10^{-8} \, \text{m})}{8.85 \cdot 10^{-12} \, \text{F/m}} \][/tex]

5. Calculate the Area [tex]\( A \)[/tex]:
Performing the multiplication and division step-by-step:
[tex]\[ A = \frac{(2.18 \cdot 3.89) \cdot 10^{-8} \cdot 10^{-8}}{8.85 \cdot 10^{-12}} \][/tex]

Simplify the exponents:
[tex]\[ A = \frac{8.4802 \cdot 10^{-16}}{8.85 \cdot 10^{-12}} \][/tex]

Dividing the coefficients and exponents:
[tex]\[ A = 0.958214689265537 \cdot 10^{-4} \][/tex]

Converting to a standard scientific notation:
[tex]\[ A = 9.58214689265537 \cdot 10^{-5} \, \text{m}^2 \][/tex]

6. Identify the Coefficient and Exponent:
The coefficient is [tex]\( 9.58214689265537 \)[/tex]
The exponent is [tex]\( -5 \)[/tex]

Therefore, the area [tex]\( A \)[/tex] of the capacitor plates, in scientific notation, is:

[tex]\[ A \approx 9.582 \cdot 10^{-5} \, \text{m}^2 \][/tex]

So, the coefficient is [tex]\(\boxed{9.582}\)[/tex] and the exponent is [tex]\(\boxed{-5}\)[/tex].