Given the function [tex]\( g(x) = x^3 + 6x^2 + 12x + 8 \)[/tex]:

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $g(x)$ \\
\hline
-3 & -1 \\
\hline
-2 & 0 \\
\hline
0 & 8 \\
\hline
2 & 64 \\
\hline
3 & 125 \\
\hline
\end{tabular}
\][/tex]

Determine the function's value when [tex]\( x = -1 \)[/tex].

A. [tex]\( g(-1) = -3 \)[/tex]
B. [tex]\( g(-1) = 0 \)[/tex]
C. [tex]\( g(-1) = 1 \)[/tex]
D. [tex]\( g(-1) = 27 \)[/tex]



Answer :

To solve for the value of the polynomial function [tex]\( g(x) \)[/tex] at [tex]\( x = -1 \)[/tex], we will follow these steps:

Given the polynomial [tex]\( g(x) = x^3 + 6x^2 + 12x + 8 \)[/tex],

1. Substitute [tex]\( x = -1 \)[/tex] into the polynomial equation:

[tex]\[ g(-1) = (-1)^3 + 6(-1)^2 + 12(-1) + 8 \][/tex]

2. Compute each term individually:

- Compute [tex]\( (-1)^3 \)[/tex]:
[tex]\[ (-1)^3 = -1 \][/tex]

- Compute [tex]\( 6(-1)^2 \)[/tex]:
[tex]\[ (-1)^2 = 1 \quad \text{so} \quad 6 \cdot 1 = 6 \][/tex]

- Compute [tex]\( 12(-1) \)[/tex]:
[tex]\[ 12 \cdot (-1) = -12 \][/tex]

- The constant term is [tex]\( 8 \)[/tex].

3. Add these computed values together:

[tex]\[ g(-1) = -1 + 6 - 12 + 8 \][/tex]

4. Simplify the expression step by step:

- First combine [tex]\(-1\)[/tex] and [tex]\(6\)[/tex]:
[tex]\[ -1 + 6 = 5 \][/tex]

- Then combine [tex]\(5\)[/tex] and [tex]\(-12\)[/tex]:
[tex]\[ 5 - 12 = -7 \][/tex]

- Finally, combine [tex]\(-7\)[/tex] and [tex]\(8\)[/tex]:
[tex]\[ -7 + 8 = 1 \][/tex]

Therefore, [tex]\( g(-1) = 1 \)[/tex].

So the value of the function when [tex]\( x = -1 \)[/tex] is [tex]\( g(-1) = 1 \)[/tex].