Given the function [tex] f(x) = x^2 [/tex], perform the following tasks:

1. What is [tex] f(x) + f(x) + f(x) [/tex]?
[tex] \square [/tex]

2. Express [tex] 3 f(x) [/tex]:
[tex] 3 f(x) = \square [/tex]

3. Evaluate [tex] 3 f(2) = \square [/tex]



Answer :

Sure, let's solve this step by step.

We are given the function [tex]\( f(x) = x^2 \)[/tex].

First, let's determine [tex]\( f(x) + f(x) + f(x) \)[/tex]. Since [tex]\( f(x) \)[/tex] is the function [tex]\( x^2 \)[/tex], summing it three times gives us:
[tex]\[ f(x) + f(x) + f(x) = 3 \cdot f(x) \][/tex]

Next, let's express [tex]\( 3 \cdot f(x) \)[/tex]:
[tex]\[ 3 \cdot f(x) = 3 \cdot x^2 \][/tex]

Now, we need to evaluate [tex]\( 3 \cdot f(2) \)[/tex]. First, calculate [tex]\( f(2) \)[/tex]:
[tex]\[ f(2) = 2^2 = 4 \][/tex]

Then, we multiply by 3:
[tex]\[ 3 \cdot f(2) = 3 \cdot 4 = 12 \][/tex]

So, the value of [tex]\( 3 \cdot f(2) \)[/tex] is [tex]\( 12 \)[/tex].