Sure, let's solve this step by step.
We are given the function [tex]\( f(x) = x^2 \)[/tex].
First, let's determine [tex]\( f(x) + f(x) + f(x) \)[/tex]. Since [tex]\( f(x) \)[/tex] is the function [tex]\( x^2 \)[/tex], summing it three times gives us:
[tex]\[
f(x) + f(x) + f(x) = 3 \cdot f(x)
\][/tex]
Next, let's express [tex]\( 3 \cdot f(x) \)[/tex]:
[tex]\[
3 \cdot f(x) = 3 \cdot x^2
\][/tex]
Now, we need to evaluate [tex]\( 3 \cdot f(2) \)[/tex]. First, calculate [tex]\( f(2) \)[/tex]:
[tex]\[
f(2) = 2^2 = 4
\][/tex]
Then, we multiply by 3:
[tex]\[
3 \cdot f(2) = 3 \cdot 4 = 12
\][/tex]
So, the value of [tex]\( 3 \cdot f(2) \)[/tex] is [tex]\( 12 \)[/tex].