A student sets up the following equation to convert a measurement. (The ? stands for a number the student is going to calculate.)

Fill in the missing part of this equation.
Note: Your answer should be in the form of one or more fractions multiplied together.

[tex]
\left(0.050 \, \text{Pa} \cdot \text{cm}^3\right) \cdot \square = ? \, \text{kPa} \cdot \text{m}^3
[/tex]



Answer :

Let's start by understanding the conversion. We need to convert the measurement [tex]\(0.050 \, \text{Pa} \cdot \text{cm}^3\)[/tex] into [tex]\(\text{kPa} \cdot \text{m}^3\)[/tex].

### Step-by-Step Conversion Process:

1. Convert Pascals (Pa) to Kilopascals (kPa):
- We know that [tex]\(1 \, \text{Pa} = 0.001 \, \text{kPa}\)[/tex].

2. Convert Cubic Centimeters (cm³) to Cubic Meters (m³):
- We know that [tex]\(1 \, \text{cm}^3 = 0.000001 \, \text{m}^3\)[/tex].

### Applying the Conversion Factors:

First, represent the conversions as fractions:
1. For Pressure:
[tex]\[ \frac{0.001 \, \text{kPa}}{1 \, \text{Pa}} \][/tex]

2. For Volume:
[tex]\[ \frac{0.000001 \, \text{m}^3}{1 \, \text{cm}^3} \][/tex]

Next, multiply these fractions by the given measurement [tex]\(0.050 \, \text{Pa} \cdot \text{cm}^3\)[/tex]:

[tex]\[ (0.050 \, \text{Pa} \cdot \text{cm}^3) \times \left( \frac{0.001 \, \text{kPa}}{1 \, \text{Pa}} \right) \times \left( \frac{0.000001 \, \text{m}^3}{1 \, \text{cm}^3} \right) \][/tex]

We need to fill in the missing part of the equation, which are the conversion factors:

[tex]\[ \left(0.050 \, \text{Pa} \cdot \text{cm}^3\right) \cdot \left( \frac{0.001 \, \text{kPa}}{1 \, \text{Pa}} \right) \cdot \left( \frac{0.000001 \, \text{m}^3}{1 \, \text{cm}^3} \right) = 5 \times 10^{-11} \, \text{kPa} \cdot \text{m}^3 \][/tex]

So, the missing part of the equation is:

[tex]\[ \boxed{\left( \frac{0.001 \, \text{kPa}}{1 \, \text{Pa}} \right) \cdot \left( \frac{0.000001 \, \text{m}^3}{1 \, \text{cm}^3} \right)} \][/tex]

This completes the step-by-step solution for converting the measurement.