[tex]\[ f(x) = -\frac{1}{3}x + 7 \][/tex]

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-3 & 8 \\
\hline
-1 & [tex]$\frac{22}{3}$[/tex] \\
\hline
1 & [tex]$\frac{20}{3}$[/tex] \\
\hline
3 & 6 \\
\hline
\end{tabular}

Determine the input that would give an output value of [tex]$\frac{2}{3}$[/tex]:

[tex]\[
\begin{array}{l}
\frac{2}{3} = -\frac{1}{3}x + 7 \\
-\frac{19}{3} = -\frac{1}{3}x \\
x = 19
\end{array}
\][/tex]

[tex]\(\square\)[/tex]



Answer :

Sure, let's work through the problem step by step.

We are given the function:
[tex]\[ f(x) = -\frac{1}{3}x + 7 \][/tex]

We want to determine the value of [tex]\( x \)[/tex] that would result in an output of [tex]\( \frac{2}{3} \)[/tex]. This means we need to solve for [tex]\( x \)[/tex] when:
[tex]\[ f(x) = \frac{2}{3} \][/tex]

Start with the equation:
[tex]\[ \frac{2}{3} = -\frac{1}{3} x + 7 \][/tex]

First, isolate the term with [tex]\( x \)[/tex]. To do this, subtract 7 from both sides of the equation:
[tex]\[ \frac{2}{3} - 7 = -\frac{1}{3} x \][/tex]

Convert 7 to a fraction with the same denominator as [tex]\( \frac{2}{3} \)[/tex]:
[tex]\[ 7 = \frac{21}{3} \][/tex]

Now the equation becomes:
[tex]\[ \frac{2}{3} - \frac{21}{3} = -\frac{1}{3} x \][/tex]

Combine the fractions on the left-hand side:
[tex]\[ \frac{2 - 21}{3} = -\frac{1}{3} x \][/tex]

Simplify the numerator:
[tex]\[ \frac{-19}{3} = -\frac{1}{3} x \][/tex]

To solve for [tex]\( x \)[/tex], get rid of the fraction by multiplying both sides of the equation by -3:
[tex]\[ -3 \left( \frac{-19}{3} \right) = (-3) \left( -\frac{1}{3} x \right) \][/tex]

This simplifies to:
[tex]\[ 19 = x \][/tex]

Therefore, the input that would give an output value of [tex]\( \frac{2}{3} \)[/tex] is:
[tex]\[ x = 19 \][/tex]