Complete the steps to write the inverse of [tex]$f(x) = x + 5$[/tex].

1. [tex]y = x + 5[/tex]
2. [tex]x = y + 5[/tex]
3. [tex]x - 5 = y[/tex]
4. [tex]f^{-1}(x) = x - 5[/tex]



Answer :

To find the inverse of the function [tex]\( f(x) = x + 5 \)[/tex], let's follow a step-by-step approach:

1. First, express the function:
[tex]\[ f(x) = x + 5 \][/tex]

2. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = x + 5 \][/tex]

3. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ x = y - 5 \][/tex]

4. Write the inverse function:
[tex]\[ f^{-1}(y) = x - 5 \][/tex]

Now let's complete the steps using the given framework:

1. [tex]\( f(x) = x + 5 \)[/tex]
2. [tex]\( y = x + 5 \)[/tex]
3. [tex]\( x = y - 5 \)[/tex]
4. [tex]\( f^{-1}(y) = x - 5 \)[/tex]

The functions have been clearly transformed to solve for the inverse step by step.