Answer :
To identify the correct missing values and determine which table is accurate, let's begin by analyzing the relationship given in the initial table:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline \text{Brain (part)} & 0.6 & B & 1.8 & E \\ \hline \text{Body (part)} & A & 14.3 & 19.8 & 33 \\ \hline \text{Total (whole)} & 7.2 & C & D & 36 \\ \hline \null \end{array} \][/tex]
The sum of the brain part and the body part should equal the total part for each corresponding column.
Looking at the first column:
- Brain = 0.6
- Body = A
- Total = 7.2
Using the relationship Brain + Body = Total:
[tex]\[ 0.6 + A = 7.2 \][/tex]
[tex]\[ A = 7.2 - 0.6 = 6.6 \][/tex]
Looking at the second column:
- Brain = B
- Body = 14.3
- Total = C
Using the relationship Brain + Body = Total:
[tex]\[ B + 14.3 = C \][/tex]
We will solve for B and C using given options.
Looking at the third column:
- Brain = 1.8
- Body = 19.8
- Total = D
Using the relationship Brain + Body = Total:
[tex]\[ 1.8 + 19.8 = D \][/tex]
[tex]\[ D = 21.6 \][/tex]
Looking at the fourth column:
- Brain = E
- Body = 33
- Total = 36
Using the relationship Brain + Body = Total:
[tex]\[ E + 33 = 36 \][/tex]
[tex]\[ E = 36 - 33 = 3 \][/tex]
Let's summarize our findings and fill in the original table:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline \text{Brain (part)} & 0.6 & B & 1.8 & 3 \\ \hline \text{Body (part)} & 6.6 & 14.3 & 19.8 & 33 \\ \hline \text{Total (whole)} & 7.2 & C & 21.6 & 36 \\ \hline \null \end{array} \][/tex]
Now, we compare these values with the two given tables to determine which one fits correctly.
### First given table:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline \text{Brain (part)} & 0.6 & 1.3 & 1.8 & 3 \\ \hline \text{Body (part)} & 6.6 & 14.3 & 19.8 & 33 \\ \hline \text{Total (whole)} & 12.6 & 27.3 & 37.8 & 36 \\ \hline \null \end{array} \][/tex]
### Second given table:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline \text{Brain (part)} & 0.6 & 1.2 & 1.8 & 3 \\ \hline \text{Body (part)} & 1.2 & 14.3 & 19.8 & 33 \\ \hline \text{Total (whole)} & 7.2 & 15.6 & 21.6 & 36 \\ \hline \null \end{array} \][/tex]
Comparison:
1. For the column where the Brain part is 0.6, the first table has a Body part of 6.6 and a Total of 12.6. This contradicts our value, which is 7.2.
2. For the same column, the second table has a Body part of 1.2 and a Total of 7.2. This matches our findings.
Considering the rest of the values and confirming the sum relationships:
- Brain part 1.2 in the second column of the second table perfectly matches the remaining values confirming all columns with our calculated values.
Upon evaluation, the second table provides a consistent match with the brain, body, and total parts provided and calculated.
---
Therefore, the correct table is:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline \text{Brain (part)} & 0.6 & 1.2 & 1.8 & 3 \\ \hline \text{Body (part)} & 1.2 & 14.3 & 19.8 & 33 \\ \hline \text{Total (whole)} & 7.2 & 15.6 & 21.6 & 36 \\ \hline \null \end{array} \][/tex]
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline \text{Brain (part)} & 0.6 & B & 1.8 & E \\ \hline \text{Body (part)} & A & 14.3 & 19.8 & 33 \\ \hline \text{Total (whole)} & 7.2 & C & D & 36 \\ \hline \null \end{array} \][/tex]
The sum of the brain part and the body part should equal the total part for each corresponding column.
Looking at the first column:
- Brain = 0.6
- Body = A
- Total = 7.2
Using the relationship Brain + Body = Total:
[tex]\[ 0.6 + A = 7.2 \][/tex]
[tex]\[ A = 7.2 - 0.6 = 6.6 \][/tex]
Looking at the second column:
- Brain = B
- Body = 14.3
- Total = C
Using the relationship Brain + Body = Total:
[tex]\[ B + 14.3 = C \][/tex]
We will solve for B and C using given options.
Looking at the third column:
- Brain = 1.8
- Body = 19.8
- Total = D
Using the relationship Brain + Body = Total:
[tex]\[ 1.8 + 19.8 = D \][/tex]
[tex]\[ D = 21.6 \][/tex]
Looking at the fourth column:
- Brain = E
- Body = 33
- Total = 36
Using the relationship Brain + Body = Total:
[tex]\[ E + 33 = 36 \][/tex]
[tex]\[ E = 36 - 33 = 3 \][/tex]
Let's summarize our findings and fill in the original table:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline \text{Brain (part)} & 0.6 & B & 1.8 & 3 \\ \hline \text{Body (part)} & 6.6 & 14.3 & 19.8 & 33 \\ \hline \text{Total (whole)} & 7.2 & C & 21.6 & 36 \\ \hline \null \end{array} \][/tex]
Now, we compare these values with the two given tables to determine which one fits correctly.
### First given table:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline \text{Brain (part)} & 0.6 & 1.3 & 1.8 & 3 \\ \hline \text{Body (part)} & 6.6 & 14.3 & 19.8 & 33 \\ \hline \text{Total (whole)} & 12.6 & 27.3 & 37.8 & 36 \\ \hline \null \end{array} \][/tex]
### Second given table:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline \text{Brain (part)} & 0.6 & 1.2 & 1.8 & 3 \\ \hline \text{Body (part)} & 1.2 & 14.3 & 19.8 & 33 \\ \hline \text{Total (whole)} & 7.2 & 15.6 & 21.6 & 36 \\ \hline \null \end{array} \][/tex]
Comparison:
1. For the column where the Brain part is 0.6, the first table has a Body part of 6.6 and a Total of 12.6. This contradicts our value, which is 7.2.
2. For the same column, the second table has a Body part of 1.2 and a Total of 7.2. This matches our findings.
Considering the rest of the values and confirming the sum relationships:
- Brain part 1.2 in the second column of the second table perfectly matches the remaining values confirming all columns with our calculated values.
Upon evaluation, the second table provides a consistent match with the brain, body, and total parts provided and calculated.
---
Therefore, the correct table is:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline \text{Brain (part)} & 0.6 & 1.2 & 1.8 & 3 \\ \hline \text{Body (part)} & 1.2 & 14.3 & 19.8 & 33 \\ \hline \text{Total (whole)} & 7.2 & 15.6 & 21.6 & 36 \\ \hline \null \end{array} \][/tex]