The expression [tex]\frac{32 x^6}{4 x^3}[/tex] is equivalent to [tex]c x^d[/tex], where [tex]c[/tex] and [tex]d[/tex] are constants and [tex]x \ \textgreater \ 0[/tex]. What is the value of [tex]c + d[/tex]?



Answer :

Sure! Let's go through a step-by-step solution for simplifying the given expression and finding the sum of the constants [tex]\(c\)[/tex] and [tex]\(d\)[/tex].

We start with the expression:
[tex]\[ \frac{32 x^6}{4 x^3} \][/tex]

1. Combine the terms in the fraction:
We can simplify this expression by combining the constants and the terms involving [tex]\(x\)[/tex]:

[tex]\[ \frac{32 x^6}{4 x^3} = \frac{32}{4} \cdot \frac{x^6}{x^3} \][/tex]

2. Simplify the constants:
Simplify the numerical portion [tex]\(\frac{32}{4}\)[/tex]:

[tex]\[ \frac{32}{4} = 8 \][/tex]

3. Simplify the exponents:
Simplify the terms involving [tex]\(x\)[/tex]:

[tex]\[ \frac{x^6}{x^3} = x^{6-3} = x^3 \][/tex]

4. Combine the results:
Now, we combine the simplified constant term with the simplified term involving [tex]\(x\)[/tex]:

[tex]\[ 8 \cdot x^3 \][/tex]

Thus, the expression [tex]\(\frac{32 x^6}{4 x^3}\)[/tex] simplifies to [tex]\(8x^3\)[/tex].

5. Identify constants [tex]\(c\)[/tex] and [tex]\(d\)[/tex]:
From the simplified expression [tex]\(8x^3\)[/tex], it is clear that:
[tex]\[ c = 8 \quad \text{(the coefficient of } x^3\text{)} \][/tex]
[tex]\[ d = 3 \quad \text{(the exponent of } x\text{)} \][/tex]

6. Calculate [tex]\(c + d\)[/tex]:
Finally, we add the constants [tex]\(c\)[/tex] and [tex]\(d\)[/tex]:
[tex]\[ c + d = 8 + 3 = 11 \][/tex]

So, the value of [tex]\(c + d\)[/tex] is [tex]\(11\)[/tex].