Enter the correct answer in the box.

The function [tex]\( f(x)=2^x-1 \)[/tex] is transformed to function [tex]\( g \)[/tex] through a horizontal shift of 7 units left. What is the equation of function [tex]\( g \)[/tex]?

Replace the values of [tex]\( h \)[/tex] and [tex]\( k \)[/tex] in the equation.
[tex]\[ g(x)=2^{x+h}+k \][/tex]



Answer :

To find the equation of the transformed function [tex]\(g\)[/tex] given the original function [tex]\(f(x) = 2^x - 1\)[/tex] and a horizontal shift of 7 units to the left, we follow these steps:

1. Identify the original function: [tex]\( f(x) = 2^x - 1 \)[/tex].

2. Determine the horizontal shift of 7 units to the left. A horizontal shift to the left by 7 units can be accounted for by replacing [tex]\(x\)[/tex] in the original function with [tex]\(x + 7\)[/tex].

3. Recognize that the given form for the transformed function is [tex]\( g(x) = 2^{x + h} + k \)[/tex].

4. Since the function is shifted 7 units to the left, [tex]\(h\)[/tex] will be [tex]\(-7\)[/tex]: [tex]\( g(x) = 2^{x + (-7)} + k \)[/tex].

5. The original function [tex]\(f(x)\)[/tex] has a vertical translation of [tex]\(-1\)[/tex], which means [tex]\(k = -1\)[/tex].

6. Substitute the values of [tex]\(h\)[/tex] and [tex]\(k\)[/tex] into the given transformed function form:

[tex]\[ g(x) = 2^{x + (-7)} + (-1) \][/tex]

Simplifying, we get:

[tex]\[ g(x) = 2^{x - 7} - 1 \][/tex]

Hence, the equation of the transformed function [tex]\(g\)[/tex] is:
[tex]\[ g(x) = 2^{x - 7} - 1 \][/tex]