[tex]$x=2$[/tex] and [tex]$y=3$[/tex] are the solutions to the simultaneous equations [tex]$x+y=5$[/tex] and [tex]$x-y=1$[/tex].



Answer :

Let's determine if [tex]\( x = 2 \)[/tex] and [tex]\( y = 3 \)[/tex] are solutions to the simultaneous equations [tex]\( x + y = 5 \)[/tex] and [tex]\( x - y = 1 \)[/tex].

1. Substitute [tex]\( x = 2 \)[/tex] and [tex]\( y = 3 \)[/tex] into the first equation [tex]\( x + y = 5 \)[/tex]:
[tex]\[ x + y = 2 + 3 \][/tex]
Simplifying the left-hand side, we get:
[tex]\[ 2 + 3 = 5 \][/tex]
This is indeed equal to 5. Thus, the first equation is satisfied.

2. Substitute [tex]\( x = 2 \)[/tex] and [tex]\( y = 3 \)[/tex] into the second equation [tex]\( x - y = 1 \)[/tex]:
[tex]\[ x - y = 2 - 3 \][/tex]
Simplifying the left-hand side, we get:
[tex]\[ 2 - 3 = -1 \][/tex]
This simplifies to [tex]\(-1\)[/tex], which does not equal 1. Thus, the second equation is not satisfied.

Therefore, while [tex]\( x = 2 \)[/tex] and [tex]\( y = 3 \)[/tex] satisfy the first equation, they do not satisfy the second equation. Hence, [tex]\( x = 2 \)[/tex] and [tex]\( y = 3 \)[/tex] are not the correct solutions to the simultaneous equations [tex]\( x + y = 5 \)[/tex] and [tex]\( x - y = 1 \)[/tex].

Other Questions