The accompanying table gives data for a commercial bank or thrift. If the legal reserve ratio falls from 25 percent to 10 percent, excess reserves of this single bank will:

\begin{tabular}{lll}
\textbf{Legal Reserve Ratio (\%)} & \textbf{Checkable Deposits} & \textbf{Actual Reserves} \\
10 & [tex]$\$[/tex] 40,000[tex]$ & $[/tex]\[tex]$ 10,000$[/tex] \\
20 & [tex]$\$[/tex] 40,000[tex]$ & $[/tex]\[tex]$ 10,000$[/tex] \\
25 & [tex]$\$[/tex] 40,000[tex]$ & $[/tex]\[tex]$ 10,000$[/tex] \\
30 & [tex]$\$[/tex] 40,000[tex]$ & $[/tex]\[tex]$ 10,000$[/tex] \\
\end{tabular}

A. rise by [tex]$\$[/tex] 60,000[tex]$ and the monetary multiplier will increase from 4 to 10.

B. fall by $[/tex]\[tex]$ 6,000$[/tex] and the monetary multiplier will decline from 30 to 10.

C. rise by [tex]$\$[/tex] 6,000[tex]$ and the monetary multiplier will increase from 4 to 10.

D. fall by $[/tex]\[tex]$ 2,000$[/tex] and the monetary multiplier will decline from 10 to 4.



Answer :

Let's analyze the given scenario step-by-step:

1. Identifying the Initial and New Legal Reserve Ratios:
- Initial Legal Reserve Ratio: 25% or 0.25
- New Legal Reserve Ratio: 10% or 0.10

2. Checkable Deposits and Actual Reserves:
- Checkable Deposits: [tex]$40,000 - Actual Reserves: $[/tex]10,000

3. Calculating Initial Required Reserves:
[tex]\[ \text{Required Reserves Initial} = \text{Legal Reserve Ratio Initial} \times \text{Checkable Deposits} \][/tex]
[tex]\[ \text{Required Reserves Initial} = 0.25 \times 40,000 = 10,000 \][/tex]

4. Calculating Initial Excess Reserves:
[tex]\[ \text{Excess Reserves Initial} = \text{Actual Reserves} - \text{Required Reserves Initial} \][/tex]
[tex]\[ \text{Excess Reserves Initial} = 10,000 - 10,000 = 0 \][/tex]

5. Calculating New Required Reserves After Reduction:
[tex]\[ \text{Required Reserves New} = \text{Legal Reserve Ratio New} \times \text{Checkable Deposits} \][/tex]
[tex]\[ \text{Required Reserves New} = 0.10 \times 40,000 = 4,000 \][/tex]

6. Calculating New Excess Reserves After Reduction:
[tex]\[ \text{Excess Reserves New} = \text{Actual Reserves} - \text{Required Reserves New} \][/tex]
[tex]\[ \text{Excess Reserves New} = 10,000 - 4,000 = 6,000 \][/tex]

7. Calculating the Change in Excess Reserves:
[tex]\[ \text{Change in Excess Reserves} = \text{Excess Reserves New} - \text{Excess Reserves Initial} \][/tex]
[tex]\[ \text{Change in Excess Reserves} = 6,000 - 0 = 6,000 \][/tex]

8. Calculating the Monetary Multiplier Before and After the Change:
[tex]\[ \text{Monetary Multiplier Initial} = \frac{1}{\text{Legal Reserve Ratio Initial}} \][/tex]
[tex]\[ \text{Monetary Multiplier Initial} = \frac{1}{0.25} = 4 \][/tex]

[tex]\[ \text{Monetary Multiplier New} = \frac{1}{\text{Legal Reserve Ratio New}} \][/tex]
[tex]\[ \text{Monetary Multiplier New} = \frac{1}{0.10} = 10 \][/tex]

Based on these calculations, the excess reserves will rise by \[tex]$6,000, and the monetary multiplier will increase from 4 to 10. Thus, the correct answer is: Excess reserves of this single bank will rise by \$[/tex]6,000, and the monetary multiplier will increase from 4 to 10.