Line segment [tex]PR[/tex] is a directed line segment beginning at [tex]P(-10, 7)[/tex] and ending at [tex]R(8, -5)[/tex].

Find point [tex]Q[/tex] on the line segment [tex]PR[/tex] that partitions it into the segments [tex]PQ[/tex] and [tex]QR[/tex] in the ratio 4:5.

A. [tex]\left(-2, \frac{5}{3}\right)[/tex]

B. [tex]\left(0, -\frac{1}{3}\right)[/tex]

C. [tex]\left(-\frac{9}{2}, 3\right)[/tex]

D. [tex]\left(-2, -\frac{5}{3}\right)[/tex]



Answer :

To find point [tex]\( Q \)[/tex] that divides the line segment [tex]\( PR \)[/tex] in the ratio [tex]\( 4:5 \)[/tex], we will use the section formula. The coordinates of point [tex]\( Q \)[/tex] can be determined by the formula:

[tex]\[ Qx = \frac{m \cdot Rx + n \cdot Px}{m + n} \][/tex]
[tex]\[ Qy = \frac{m \cdot Ry + n \cdot Py}{m + n} \][/tex]

where [tex]\( P(x_1, y_1) = (-10,7) \)[/tex], [tex]\( R(x_2, y_2) = (8,-5) \)[/tex], and the ratio [tex]\( PQ : QR = 4:5 \)[/tex], which means [tex]\( m = 4 \)[/tex] and [tex]\( n = 5 \)[/tex].

First, let's find the x-coordinate of [tex]\( Q \)[/tex]:

[tex]\[ Qx = \frac{4 \cdot 8 + 5 \cdot (-10)}{4 + 5} \][/tex]
[tex]\[ Qx = \frac{32 - 50}{9} \][/tex]
[tex]\[ Qx = \frac{-18}{9} \][/tex]
[tex]\[ Qx = -2 \][/tex]

Next, we find the y-coordinate of [tex]\( Q \)[/tex]:

[tex]\[ Qy = \frac{4 \cdot (-5) + 5 \cdot 7}{4 + 5} \][/tex]
[tex]\[ Qy = \frac{-20 + 35}{9} \][/tex]
[tex]\[ Qy = \frac{15}{9} \][/tex]
[tex]\[ Qy = \frac{5}{3} \][/tex]

So, the coordinates of point [tex]\( Q \)[/tex] are [tex]\( \left(-2, \frac{5}{3}\right) \)[/tex].

Thus, the correct answer is:
[tex]\[ \boxed{\left(-2, \frac{5}{3}\right)} \][/tex]