Let's solve the given system of equations step-by-step:
1. Start with the first equation:
[tex]\[\operatorname{mom} \times 3 = 28\][/tex]
To solve for [tex]\(\operatorname{mom}\)[/tex], divide both sides by 3:
[tex]\[\operatorname{mom} = \frac{28}{3} \approx 9.333333333333334\][/tex]
2. Now, consider the second equation:
[tex]\[\operatorname{mom} \times 3 = 3\][/tex]
This equation does not hold true with the value of [tex]\(\operatorname{mom}\)[/tex] we just found since [tex]\(\operatorname{mom} \times 3 \approx 28 \neq 3\)[/tex]. Therefore, we treat these as distinct instances or likely errors and move forward based on the first correct value.
3. Next, solve the third equation:
[tex]\[\operatorname{mon} + 3 = 13\][/tex]
Subtract 3 from both sides to isolate [tex]\(\operatorname{mon}\)[/tex]:
[tex]\[\operatorname{mon} = 13 - 3 = 10\][/tex]
4. Finally, solve the expression provided in the problem:
[tex]\[4 + m + 12\][/tex]
Here, we assume that [tex]\(m\)[/tex] can be represented by the previously computed value of [tex]\(\operatorname{mon}\)[/tex]:
[tex]\[m = \operatorname{mon} = 10\][/tex]
Substitute this value into the expression:
[tex]\[4 + 10 + 12 = 26\][/tex]
So, the values are:
- [tex]\(\operatorname{mom} \approx 9.333333333333334\)[/tex]
- [tex]\(\operatorname{mon} = 10\)[/tex]
- Final expression result: 26