Answer :
Certainly! Let's solve the equation step by step:
Given:
[tex]\[ \left(\frac{1}{3}\right) \frac{x^2-2 x}{16-2 x}=4 x \sqrt{9} \][/tex]
Firstly, note that [tex]\(\sqrt{9} = 3\)[/tex]. Substitute this value into the equation:
[tex]\[ \left(\frac{1}{3}\right) \frac{x^2-2 x}{16-2 x}=4 x \cdot 3 \][/tex]
Simplify the right side:
[tex]\[ \left(\frac{1}{3}\right) \frac{x^2-2 x}{16-2 x} = 12 x \][/tex]
Next, multiply both sides of the equation by 3 to eliminate the fraction on the left:
[tex]\[ \frac{x^2-2 x}{16-2 x} = 36 x \][/tex]
Now let's get rid of the fraction by multiplying both sides of the equation by [tex]\(16-2x\)[/tex]:
[tex]\[ x^2 - 2x = 36x(16 - 2x) \][/tex]
Expand the right side:
[tex]\[ x^2 - 2x = 36x \cdot 16 - 36x \cdot 2x \][/tex]
[tex]\[ x^2 - 2x = 576x - 72x^2 \][/tex]
Bring all the terms to one side of the equation to set it equal to zero:
[tex]\[ x^2 - 2x - 576x + 72x^2 = 0 \][/tex]
[tex]\[ 73x^2 - 578x = 0 \][/tex]
Factor out the common term [tex]\(x\)[/tex]:
[tex]\[ x(73x - 578) = 0 \][/tex]
This equation will hold true if either:
[tex]\[ x = 0 \][/tex]
or
[tex]\[ 73x - 578 = 0 \][/tex]
Solve the second equation for [tex]\(x\)[/tex]:
[tex]\[ 73x - 578 = 0 \][/tex]
[tex]\[ 73x = 578 \][/tex]
[tex]\[ x = \frac{578}{73} \][/tex]
[tex]\[ x \approx 7.91780821917808 \][/tex]
So the solutions to the equation [tex]\(\left(\frac{1}{3}\right) \frac{x^2-2 x}{16-2 x}=4 x \sqrt{9}\)[/tex] are:
[tex]\[ x = 0 \quad \text{and} \quad x \approx 7.91780821917808 \][/tex]
Given:
[tex]\[ \left(\frac{1}{3}\right) \frac{x^2-2 x}{16-2 x}=4 x \sqrt{9} \][/tex]
Firstly, note that [tex]\(\sqrt{9} = 3\)[/tex]. Substitute this value into the equation:
[tex]\[ \left(\frac{1}{3}\right) \frac{x^2-2 x}{16-2 x}=4 x \cdot 3 \][/tex]
Simplify the right side:
[tex]\[ \left(\frac{1}{3}\right) \frac{x^2-2 x}{16-2 x} = 12 x \][/tex]
Next, multiply both sides of the equation by 3 to eliminate the fraction on the left:
[tex]\[ \frac{x^2-2 x}{16-2 x} = 36 x \][/tex]
Now let's get rid of the fraction by multiplying both sides of the equation by [tex]\(16-2x\)[/tex]:
[tex]\[ x^2 - 2x = 36x(16 - 2x) \][/tex]
Expand the right side:
[tex]\[ x^2 - 2x = 36x \cdot 16 - 36x \cdot 2x \][/tex]
[tex]\[ x^2 - 2x = 576x - 72x^2 \][/tex]
Bring all the terms to one side of the equation to set it equal to zero:
[tex]\[ x^2 - 2x - 576x + 72x^2 = 0 \][/tex]
[tex]\[ 73x^2 - 578x = 0 \][/tex]
Factor out the common term [tex]\(x\)[/tex]:
[tex]\[ x(73x - 578) = 0 \][/tex]
This equation will hold true if either:
[tex]\[ x = 0 \][/tex]
or
[tex]\[ 73x - 578 = 0 \][/tex]
Solve the second equation for [tex]\(x\)[/tex]:
[tex]\[ 73x - 578 = 0 \][/tex]
[tex]\[ 73x = 578 \][/tex]
[tex]\[ x = \frac{578}{73} \][/tex]
[tex]\[ x \approx 7.91780821917808 \][/tex]
So the solutions to the equation [tex]\(\left(\frac{1}{3}\right) \frac{x^2-2 x}{16-2 x}=4 x \sqrt{9}\)[/tex] are:
[tex]\[ x = 0 \quad \text{and} \quad x \approx 7.91780821917808 \][/tex]