Which expression can be used to find [tex]-5\left(2 \frac{1}{16}\right)[/tex]?

A. [tex]-5(2) + (-5)\left(\frac{1}{16}\right)[/tex]
B. [tex]5(2) + (-5)\left(\frac{1}{16}\right)[/tex]



Answer :

Let's carefully analyze and break down the expression [tex]\(-5\left(2 \frac{1}{16}\right)\)[/tex].

First, convert the mixed number [tex]\(2 \frac{1}{16}\)[/tex] into an improper fraction:
[tex]\[ 2 \frac{1}{16} = 2 + \frac{1}{16} \][/tex]

Thus, the expression becomes:
[tex]\[ -5\left(2 + \frac{1}{16}\right) \][/tex]

Next, we use the distributive property of multiplication over addition:
[tex]\[ -5 \left(2 + \frac{1}{16}\right) = -5(2) + -5\left(\frac{1}{16}\right) \][/tex]

Let's identify each term after the distribution:
1. The first term is:
[tex]\[ -5(2) = -10 \][/tex]
2. The second term is:
[tex]\[ -5\left(\frac{1}{16}\right) = -\frac{5}{16} \][/tex]

Since [tex]\(-\frac{5}{16}\)[/tex] is approximately [tex]\(-0.3125\)[/tex], the values simplify to:
[tex]\[ -5(2) + -5\left(\frac{1}{16}\right) = -10 + -0.3125 \approx -10.3125 \][/tex]

So, the expression that correctly finds [tex]\(-5\left(2 \frac{1}{16}\right)\)[/tex] is:
[tex]\[ -5(2) + (-5)\left(\frac{1}{16}\right) \][/tex]

Thus, the correct choice is:
[tex]\[ -5(2) + (-5)\left(\frac{1}{16}\right) \quad \boxed{} \][/tex]

Therefore, the expression [tex]\(-5\left(2 \frac{1}{16}\right)\)[/tex] can be represented by:
[tex]\[ -5(2) + (-5)\left(\frac{1}{16}\right) \quad \boxed{} \][/tex]