Select the correct answer.

The endpoints of [tex]$\overline{WX}$[/tex] are [tex]$W(5, -3)$[/tex] and [tex][tex]$X(-1, -9)$[/tex][/tex].

What is the length of [tex]$\overline{WX}$[/tex]?
A. 6
B. 12
C. 16
D. [tex]$2 \sqrt{3}$[/tex]
E. [tex][tex]$6 \sqrt{2}$[/tex][/tex]



Answer :

To find the length of the line segment [tex]\(\overline{WX}\)[/tex] with endpoints [tex]\(W(5, -3)\)[/tex] and [tex]\(X(-1, -9)\)[/tex], we can use the distance formula. The distance formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:

[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Substitute the coordinates of the points [tex]\(W(5, -3)\)[/tex] and [tex]\(X(-1, -9)\)[/tex] into the formula:

[tex]\[ d = \sqrt{((-1) - 5)^2 + ((-9) - (-3))^2} \][/tex]

Calculate the differences in the coordinates:

[tex]\[ x_2 - x_1 = -1 - 5 = -6 \][/tex]
[tex]\[ y_2 - y_1 = -9 - (-3) = -9 + 3 = -6 \][/tex]

Now substitute these differences into the distance formula:

[tex]\[ d = \sqrt{(-6)^2 + (-6)^2} \][/tex]

Calculate the squares of [tex]\(-6\)[/tex]:

[tex]\[ (-6)^2 = 36 \][/tex]
[tex]\[ (-6)^2 = 36 \][/tex]

Sum the squares:

[tex]\[ 36 + 36 = 72 \][/tex]

Finally, take the square root of 72:

[tex]\[ d = \sqrt{72} = \sqrt{36 \times 2} = 6\sqrt{2} \][/tex]

Thus, the length of [tex]\(\overline{WX}\)[/tex] is [tex]\(6\sqrt{2}\)[/tex], which corresponds to option E. Therefore, the correct answer is:

E. [tex]\(6\sqrt{2}\)[/tex]