A 2 kg box is falling straight down. If it has a kinetic energy of 2 J when it is 10 m above the ground, then when it is 5 m above the ground, what is its:

(a) kinetic energy?
(b) speed?



Answer :

Let's solve this problem step-by-step.

### Given Data:
- Mass of the box ([tex]\( m \)[/tex]) = 2 kg
- Initial kinetic energy ([tex]\( KE_{initial} \)[/tex]) = 2 Joules
- Initial height ([tex]\( h_{initial} \)[/tex]) = 10 meters
- Final height ([tex]\( h_{final} \)[/tex]) = 5 meters
- Acceleration due to gravity ([tex]\( g \)[/tex]) = 9.81 m/s[tex]\(^2\)[/tex]

### Calculation:

Step 1: Calculate Initial Potential Energy
[tex]\( PE_{initial} = m \cdot g \cdot h_{initial} \)[/tex]
[tex]\[ PE_{initial} = 2 \, \text{kg} \times 9.81 \, \text{m/s}^2 \times 10 \, \text{m} \][/tex]
[tex]\[ PE_{initial} = 196.2 \, \text{Joules} \][/tex]

Step 2: Calculate Final Potential Energy
[tex]\( PE_{final} = m \cdot g \cdot h_{final} \)[/tex]
[tex]\[ PE_{final} = 2 \, \text{kg} \times 9.81 \, \text{m/s}^2 \times 5 \, \text{m} \][/tex]
[tex]\[ PE_{final} = 98.1 \, \text{Joules} \][/tex]

Step 3: Calculate Change in Potential Energy
[tex]\[ \Delta PE = PE_{initial} - PE_{final} \][/tex]
[tex]\[ \Delta PE = 196.2 \, \text{Joules} - 98.1 \, \text{Joules} \][/tex]
[tex]\[ \Delta PE = 98.1 \, \text{Joules} \][/tex]

Step 4: Calculate Final Kinetic Energy
The change in potential energy results in a change in kinetic energy:
[tex]\[ KE_{final} = KE_{initial} + \Delta PE \][/tex]
[tex]\[ KE_{final} = 2 \, \text{Joules} + 98.1 \, \text{Joules} \][/tex]
[tex]\[ KE_{final} = 100.1 \, \text{Joules} \][/tex]

This concludes part (a):

(a) The kinetic energy when the box is 5 meters above the ground is 100.1 J.

Step 5: Calculate the Speed of the Box at 5 meters above the Ground:
Using the kinetic energy formula:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
Solving for [tex]\( v \)[/tex]:
[tex]\[ v = \sqrt{\frac{2 \cdot KE}{m}} \][/tex]
Substitute [tex]\( KE_{final} \)[/tex] and [tex]\( m \)[/tex]:
[tex]\[ v = \sqrt{\frac{2 \cdot 100.1 \, \text{Joules}}{2 \, \text{kg}}} \][/tex]
[tex]\[ v = \sqrt{\frac{200.2}{2}} \][/tex]
[tex]\[ v = \sqrt{100.1} \][/tex]
[tex]\[ v \approx 10.005 \, \text{m/s} \][/tex]

This concludes part (b):

(b) The speed of the box when it is 5 meters above the ground is approximately 10.005 m/s.