Solve for [tex]$x$[/tex] in the equation [tex]$x^2 - 12x + 36 = 90$[/tex].

A. [tex][tex]$x = 6 \pm 3 \sqrt{10}$[/tex][/tex]
B. [tex]$x = 6 \pm 2 \sqrt{7}$[/tex]
C. [tex]$x = 12 \pm 3 \sqrt{22}$[/tex]
D. [tex][tex]$x = 12 \pm 3 \sqrt{10}$[/tex][/tex]



Answer :

To solve the quadratic equation [tex]\( x^2 - 12x + 36 = 90 \)[/tex], follow the steps below:

1. Set the equation to zero:
Start by rearranging the given equation into the standard form of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex].

[tex]\[ x^2 - 12x + 36 - 90 = 0 \][/tex]

2. Simplify the equation:

[tex]\[ x^2 - 12x - 54 = 0 \][/tex]

3. Solve the quadratic equation:
To find the roots of the quadratic equation [tex]\( x^2 - 12x - 54 = 0 \)[/tex], use the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -12 \)[/tex], and [tex]\( c = -54 \)[/tex].

4. Determine the discriminant:

[tex]\[ b^2 - 4ac = (-12)^2 - 4(1)(-54) \][/tex]

[tex]\[ b^2 - 4ac = 144 + 216 \][/tex]

[tex]\[ b^2 - 4ac = 360 \][/tex]

5. Substitute the values back into the quadratic formula:

[tex]\[ x = \frac{-(-12) \pm \sqrt{360}}{2 \cdot 1} \][/tex]

[tex]\[ x = \frac{12 \pm \sqrt{360}}{2} \][/tex]

6. Simplify the square root and the fraction:

[tex]\[ \sqrt{360} = \sqrt{36 \cdot 10} = 6\sqrt{10} \][/tex]

Substitute this back into the equation:

[tex]\[ x = \frac{12 \pm 6\sqrt{10}}{2} \][/tex]

[tex]\[ x = \frac{12}{2} \pm \frac{6\sqrt{10}}{2} \][/tex]

[tex]\[ x = 6 \pm 3\sqrt{10} \][/tex]

Therefore, the solutions to the quadratic equation [tex]\( x^2 - 12x - 54 = 0 \)[/tex] are:

[tex]\[ x = 6 - 3\sqrt{10} \quad \text{and} \quad x = 6 + 3\sqrt{10} \][/tex]

So the correct answer is:

[tex]\[ x = 6 \pm 3\sqrt{10} \][/tex]