Answer :

To solve for [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex] in the equation [tex]\(x - 4y = 8\)[/tex], follow these steps:

1. Isolate the term involving [tex]\(y\)[/tex]:
[tex]\[ x - 4y = 8 \][/tex]
To isolate the term involving [tex]\(y\)[/tex], subtract [tex]\(x\)[/tex] from both sides of the equation:
[tex]\[ -4y = 8 - x \][/tex]

2. Solve for [tex]\(y\)[/tex]:
Next, divide both sides of the equation by [tex]\(-4\)[/tex] to solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{8 - x}{-4} \][/tex]

3. Simplify the expression:
Simplify the fraction by dividing each term in the numerator by [tex]\(-4\)[/tex]:
[tex]\[ y = \frac{8}{-4} + \frac{-x}{-4} \][/tex]

Simplifying each term:
[tex]\[ y = -2 + \frac{x}{4} \][/tex]

Therefore, the expression for [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex] is:
[tex]\[ y = -2 + \frac{x}{4} \][/tex]