To simplify the expression [tex]\(-10(-2y - 4)\)[/tex] using the distributive property, follow these steps:
1. Identify the Distributive Property:
The distributive property states that [tex]\(a(b + c) = ab + ac\)[/tex]. In this case, we will distribute [tex]\(-10\)[/tex] across [tex]\(-2y - 4\)[/tex].
2. Apply the Distributive Property:
Distribute [tex]\(-10\)[/tex] to each term inside the parentheses:
[tex]\[
-10(-2y) + (-10)(-4)
\][/tex]
3. Simplify Each Term:
- For the first term, [tex]\(-10 \times -2y\)[/tex]:
[tex]\[
-10 \times -2y = 20y
\][/tex]
- For the second term, [tex]\(-10 \times -4\)[/tex]:
[tex]\[
-10 \times -4 = 40
\][/tex]
4. Combine the Results:
Combine the simplified terms:
[tex]\[
20y + 40
\][/tex]
Therefore, using the distributive property, the simplified form of [tex]\(-10(-2y - 4)\)[/tex] is:
[tex]\[
-10(-2y - 4) = 20y + 40
\][/tex]
So in the equation:
[tex]\[
-10(-2y - 4) = [?]y + \square
\][/tex]
The values for the blanks are:
[tex]\[
[?] = 20 \quad \text{and} \quad \square = 40
\][/tex]
Hence, the solution is:
[tex]\[
-10(-2y - 4) = 20y + 40
\][/tex]