Subtract: [tex]\left(4b^2 - 8b + 11\right) - \left(-2b^2 - 4b + 5\right)[/tex]

A. [tex]6b^2 - 4b + 6[/tex]

B. [tex]2b^2 - 12b + 6[/tex]

C. [tex]6b^2 - 12b + 6[/tex]

D. [tex]2b^2 - 12b + 16[/tex]



Answer :

Sure, let's work through the subtraction of the two given expressions step-by-step:

We need to subtract:
[tex]\[ \left(4b^2 - 8b + 11\right) - \left(-2b^2 - 4b + 5\right) \][/tex]

First, let's distribute the negative sign for the second expression:

[tex]\[ 4b^2 - 8b + 11 - (-2b^2 - 4b + 5) \][/tex]
[tex]\[ = 4b^2 - 8b + 11 + 2b^2 + 4b - 5 \][/tex]

Now, we combine like terms:

1. Combine the [tex]\(b^2\)[/tex] terms:
[tex]\[ 4b^2 + 2b^2 = 6b^2 \][/tex]

2. Combine the [tex]\(b\)[/tex] terms:
[tex]\[ -8b + 4b = -4b \][/tex]

3. Combine the constant terms:
[tex]\[ 11 - 5 = 6 \][/tex]

Thus, after combining all like terms, we get:

[tex]\[ 6b^2 - 4b + 6 \][/tex]

So, the simplified result of subtracting [tex]\(\left(4b^2 - 8b + 11\right)\)[/tex] from [tex]\(\left(-2b^2 - 4b + 5\right)\)[/tex] is:

[tex]\[ 6b^2 - 4b + 6 \][/tex]

And the correct answer from the given choices is:

[tex]\[ 6b^2 - 4b + 6 \][/tex]