To simplify the equation [tex]\( 9(2x + 3y - 1) \)[/tex] using the distributive property, we need to distribute the 9 to each term inside the parentheses. Here's a step-by-step breakdown:
1. Distribute 9 to [tex]\( 2x \)[/tex]:
[tex]\[
9 \cdot 2x = 18x
\][/tex]
2. Distribute 9 to [tex]\( 3y \)[/tex]:
[tex]\[
9 \cdot 3y = 27y
\][/tex]
3. Distribute 9 to [tex]\(-1 \)[/tex]:
[tex]\[
9 \cdot (-1) = -9
\][/tex]
Putting it all together, we combine [tex]\( 18x \)[/tex], [tex]\( 27y \)[/tex], and [tex]\(-9\)[/tex] to obtain the simplified equation:
[tex]\[
9(2x + 3y - 1) = 18x + 27y - 9
\][/tex]
Therefore, the simplified form of the equation is:
[tex]\[
9(2x + 3y - 1) = 18x + 27y - 9
\][/tex]