What are the zeros of the polynomial function [tex]$f(x) = x^3 - 10x^2 + 24x$[/tex]?

A. [tex]-6, 0, 4[/tex]
B. [tex]6, 0, -4[/tex]
C. [tex]6, 0, 4[/tex]
D. [tex]-6, 0, -4[/tex]



Answer :

To find the zeros of the polynomial function [tex]\( f(x) = x^3 - 10x^2 + 24x \)[/tex], we need to solve the equation [tex]\( f(x) = 0 \)[/tex]. Here are the detailed steps to find the zeros:

1. Factor the Polynomial:
Let's start by factoring the polynomial [tex]\( f(x) \)[/tex].

[tex]\[ f(x) = x^3 - 10x^2 + 24x \][/tex]

Notice that we can factor out an [tex]\( x \)[/tex] from each term:

[tex]\[ f(x) = x(x^2 - 10x + 24) \][/tex]

So, we have factored the polynomial into two parts: [tex]\( x \)[/tex] and [tex]\( x^2 - 10x + 24 \)[/tex].

2. Find the Zeros of Each Factor:
First, let's find the zero from the factor [tex]\( x \)[/tex].

[tex]\[ x = 0 \][/tex]

So, one zero of the polynomial is [tex]\( x = 0 \)[/tex].

Now, let's find the zeros of the quadratic polynomial [tex]\( x^2 - 10x + 24 \)[/tex].

We can solve the quadratic equation [tex]\( x^2 - 10x + 24 = 0 \)[/tex] either by factoring, using the quadratic formula, or completing the square. Let's use factoring.

[tex]\[ x^2 - 10x + 24 = (x - 4)(x - 6) \][/tex]

So, the quadratic polynomial can be factored as [tex]\( (x - 4)(x - 6) \)[/tex].

3. Solve for the Remaining Zeros:

[tex]\[ (x - 4) = 0 \quad \text{or} \quad (x - 6) = 0 \][/tex]

Setting each factor equal to zero, we find the additional zeros:

[tex]\[ x - 4 = 0 \Rightarrow x = 4 \][/tex]

[tex]\[ x - 6 = 0 \Rightarrow x = 6 \][/tex]

4. Conclusively List All Zeros:
Therefore, the zeros of the polynomial function [tex]\( f(x) = x^3 - 10x^2 + 24x \)[/tex] are:

[tex]\[ x = 0, \, x = 4, \, x = 6 \][/tex]

So, the correct answer is:

[tex]\[ 6, 0, 4 \][/tex]

Therefore, the answer is:

rect [tex]${data-answer}gt;$[/tex] [tex]$6,0,4$[/tex]