Which of these is equivalent to [tex]$9^2+4^2$[/tex]?

A. [tex]$(9 \times 4)^2$[/tex]
B. [tex][tex]$(9+4)^2$[/tex][/tex]
C. [tex]$(9+9)+(4+4)$[/tex]
D. [tex]$(9 \times 9)+(4 \times 4)$[/tex]



Answer :

Let's examine each of the given options to determine which is equivalent to [tex]\(9^2 + 4^2\)[/tex]:

1. Calculate the original expression [tex]\(9^2 + 4^2\)[/tex]:

[tex]\[ 9^2 = 81 \quad \text{and} \quad 4^2 = 16 \][/tex]
[tex]\[ 9^2 + 4^2 = 81 + 16 = 97 \][/tex]

So, the value of the original expression is 97.

2. Evaluate each of the given options:

- Option 1: [tex]\((9 \times 4)^2\)[/tex]

[tex]\[ 9 \times 4 = 36 \][/tex]
[tex]\[ 36^2 = 1296 \][/tex]

So, the value of this option is 1296.

- Option 2: [tex]\((9 + 4)^2\)[/tex]

[tex]\[ 9 + 4 = 13 \][/tex]
[tex]\[ 13^2 = 169 \][/tex]

So, the value of this option is 169.

- Option 3: [tex]\((9 + 9) + (4 + 4)\)[/tex]

[tex]\[ 9 + 9 = 18 \quad \text{and} \quad 4 + 4 = 8 \][/tex]
[tex]\[ 18 + 8 = 26 \][/tex]

So, the value of this option is 26.

- Option 4: [tex]\((9 \times 9) + (4 \times 4)\)[/tex]

[tex]\[ 9 \times 9 = 81 \quad \text{and} \quad 4 \times 4 = 16 \][/tex]
[tex]\[ 81 + 16 = 97 \][/tex]

So, the value of this option is 97.

3. Compare the calculated values:

- [tex]\(1296\)[/tex] (option 1)
- [tex]\(169\)[/tex] (option 2)
- [tex]\(26\)[/tex] (option 3)
- [tex]\(97\)[/tex] (option 4)

Out of these, the only value that matches the original expression [tex]\(97\)[/tex] is from option 4.

Therefore, the correct answer is:

[tex]\((9 \times 9) + (4 \times 4)\)[/tex]