Answer :
To determine which of the given expressions is equal to [tex]\( 6 + (2 + 3) \times 5 \)[/tex], let's evaluate each step-by-step.
First, simplify the given expression [tex]\( 6 + (2 + 3) \times 5 \)[/tex]:
1. Evaluate the parentheses:
[tex]\[ 2 + 3 = 5 \][/tex]
2. Substitute back into the expression:
[tex]\[ 6 + 5 \times 5 \][/tex]
3. Evaluate the multiplication:
[tex]\[ 5 \times 5 = 25 \][/tex]
4. Add the results:
[tex]\[ 6 + 25 = 31 \][/tex]
So, the given expression simplifies to 31.
Now, let’s compare this result to each of the given expressions:
1. [tex]\( 1 + 10 \times 3 \)[/tex]
- Evaluate the multiplication:
[tex]\[ 10 \times 3 = 30 \][/tex]
- Add the result to 1:
[tex]\[ 1 + 30 = 31 \][/tex]
This expression simplifies to 31, which matches the given expression.
2. [tex]\( (4 \times 5) + 3 \)[/tex]
- Evaluate the multiplication:
[tex]\[ 4 \times 5 = 20 \][/tex]
- Add the result to 3:
[tex]\[ 20 + 3 = 23 \][/tex]
This expression simplifies to 23, which does not match the given expression.
3. [tex]\( 9 \times 5 + 10 \)[/tex]
- Evaluate the multiplication:
[tex]\[ 9 \times 5 = 45 \][/tex]
- Add the result to 10:
[tex]\[ 45 + 10 = 55 \][/tex]
This expression simplifies to 55, which does not match the given expression.
4. [tex]\( 5 + 4 \times (5 - 6) \)[/tex]
- Evaluate the parentheses:
[tex]\[ 5 - 6 = -1 \][/tex]
- Evaluate the multiplication:
[tex]\[ 4 \times (-1) = -4 \][/tex]
- Add the result to 5:
[tex]\[ 5 + (-4) = 1 \][/tex]
This expression simplifies to 1, which does not match the given expression.
The expression that equals [tex]\( 6 + (2 + 3) \times 5 \)[/tex], which is 31, is [tex]\( 1 + 10 \times 3 \)[/tex].
Hence, the correct expression is:
[tex]\[ 1 + 10 \times 3 \][/tex]
So, the answer is:
[tex]\[ \boxed{1} \][/tex]
First, simplify the given expression [tex]\( 6 + (2 + 3) \times 5 \)[/tex]:
1. Evaluate the parentheses:
[tex]\[ 2 + 3 = 5 \][/tex]
2. Substitute back into the expression:
[tex]\[ 6 + 5 \times 5 \][/tex]
3. Evaluate the multiplication:
[tex]\[ 5 \times 5 = 25 \][/tex]
4. Add the results:
[tex]\[ 6 + 25 = 31 \][/tex]
So, the given expression simplifies to 31.
Now, let’s compare this result to each of the given expressions:
1. [tex]\( 1 + 10 \times 3 \)[/tex]
- Evaluate the multiplication:
[tex]\[ 10 \times 3 = 30 \][/tex]
- Add the result to 1:
[tex]\[ 1 + 30 = 31 \][/tex]
This expression simplifies to 31, which matches the given expression.
2. [tex]\( (4 \times 5) + 3 \)[/tex]
- Evaluate the multiplication:
[tex]\[ 4 \times 5 = 20 \][/tex]
- Add the result to 3:
[tex]\[ 20 + 3 = 23 \][/tex]
This expression simplifies to 23, which does not match the given expression.
3. [tex]\( 9 \times 5 + 10 \)[/tex]
- Evaluate the multiplication:
[tex]\[ 9 \times 5 = 45 \][/tex]
- Add the result to 10:
[tex]\[ 45 + 10 = 55 \][/tex]
This expression simplifies to 55, which does not match the given expression.
4. [tex]\( 5 + 4 \times (5 - 6) \)[/tex]
- Evaluate the parentheses:
[tex]\[ 5 - 6 = -1 \][/tex]
- Evaluate the multiplication:
[tex]\[ 4 \times (-1) = -4 \][/tex]
- Add the result to 5:
[tex]\[ 5 + (-4) = 1 \][/tex]
This expression simplifies to 1, which does not match the given expression.
The expression that equals [tex]\( 6 + (2 + 3) \times 5 \)[/tex], which is 31, is [tex]\( 1 + 10 \times 3 \)[/tex].
Hence, the correct expression is:
[tex]\[ 1 + 10 \times 3 \][/tex]
So, the answer is:
[tex]\[ \boxed{1} \][/tex]