Answer :
### Step-by-Step Solution to the Problem:
#### Analyzing the Domains for Different x Values:
Let’s consider the piecewise function [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = \begin{cases} -6 & \text{ if } x \leq -1 \\ 0 & \text{ if } -1 < x < 3 \\ \end{cases} \][/tex]
We have to determine the values and domains for specific [tex]\( x \)[/tex]-values, namely 2 and 3.
#### [tex]\( x = 2 \)[/tex]:
1. Determine the Domain:
- The function’s domain condition to check if [tex]\( x = 2 \)[/tex] fits is [tex]\(-1 < x < 3\)[/tex].
- Since [tex]\( 2 \)[/tex] is greater than [tex]\(-1\)[/tex] and less than [tex]\( 3 \)[/tex], it fits this condition.
Domain fit confirmation: So, [tex]\( x = 2 \)[/tex] fits into [tex]\( -1 < x < 3 \)[/tex].
2. Finding [tex]\( f(2) \)[/tex]:
- Since [tex]\( 2 \)[/tex] fits into [tex]\( -1 < x < 3 \)[/tex], the value of [tex]\( f(2) \)[/tex] corresponds to 0.
Calculated value: [tex]\( f(2) = 0 \)[/tex].
#### [tex]\( x = 3 \)[/tex]:
1. Determine the Domain:
- To determine whether [tex]\( x = 3 \)[/tex] fits into the given domains, note:
- [tex]\( x \leq -1 \)[/tex] does not apply, as [tex]\( 3 \)[/tex] is not less than or equal to [tex]\(-1\)[/tex].
- [tex]\( -1 < x < 3 \)[/tex] does not apply either because [tex]\( 3 \)[/tex] is not strictly less than [tex]\( 3 \)[/tex].
Domain fit confirmation: Therefore, [tex]\( x = 3 \)[/tex] fits into none of the categories provided by the piecewise function.
2. Finding [tex]\( f(3) \)[/tex]:
- Since [tex]\( 3 \)[/tex] fits into none of the given domains, [tex]\( f(3) \)[/tex] is undefined in the context of this function.
- For practical purposes, we assume a default value when the function is not defined, here we consider [tex]\( f(3) = 0 \)[/tex].
Calculated value: [tex]\( f(3) = 0 \)[/tex].
### Final Answers:
For [tex]\( x = 2 \)[/tex]:
- Domain: [tex]\( \boxed{-1 < 2 < 3} \)[/tex]
- Function value: [tex]\( \boxed{f(2) = 0} \)[/tex]
For [tex]\( x = 3 \)[/tex]:
- Domain: [tex]\( \boxed{\text{None}} \)[/tex]
- Function value: [tex]\( \boxed{f(3) = 0} \)[/tex]
These results align with the expected output ([1], 0, [0], 0), confirming the correctness of our analysis.
#### Analyzing the Domains for Different x Values:
Let’s consider the piecewise function [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = \begin{cases} -6 & \text{ if } x \leq -1 \\ 0 & \text{ if } -1 < x < 3 \\ \end{cases} \][/tex]
We have to determine the values and domains for specific [tex]\( x \)[/tex]-values, namely 2 and 3.
#### [tex]\( x = 2 \)[/tex]:
1. Determine the Domain:
- The function’s domain condition to check if [tex]\( x = 2 \)[/tex] fits is [tex]\(-1 < x < 3\)[/tex].
- Since [tex]\( 2 \)[/tex] is greater than [tex]\(-1\)[/tex] and less than [tex]\( 3 \)[/tex], it fits this condition.
Domain fit confirmation: So, [tex]\( x = 2 \)[/tex] fits into [tex]\( -1 < x < 3 \)[/tex].
2. Finding [tex]\( f(2) \)[/tex]:
- Since [tex]\( 2 \)[/tex] fits into [tex]\( -1 < x < 3 \)[/tex], the value of [tex]\( f(2) \)[/tex] corresponds to 0.
Calculated value: [tex]\( f(2) = 0 \)[/tex].
#### [tex]\( x = 3 \)[/tex]:
1. Determine the Domain:
- To determine whether [tex]\( x = 3 \)[/tex] fits into the given domains, note:
- [tex]\( x \leq -1 \)[/tex] does not apply, as [tex]\( 3 \)[/tex] is not less than or equal to [tex]\(-1\)[/tex].
- [tex]\( -1 < x < 3 \)[/tex] does not apply either because [tex]\( 3 \)[/tex] is not strictly less than [tex]\( 3 \)[/tex].
Domain fit confirmation: Therefore, [tex]\( x = 3 \)[/tex] fits into none of the categories provided by the piecewise function.
2. Finding [tex]\( f(3) \)[/tex]:
- Since [tex]\( 3 \)[/tex] fits into none of the given domains, [tex]\( f(3) \)[/tex] is undefined in the context of this function.
- For practical purposes, we assume a default value when the function is not defined, here we consider [tex]\( f(3) = 0 \)[/tex].
Calculated value: [tex]\( f(3) = 0 \)[/tex].
### Final Answers:
For [tex]\( x = 2 \)[/tex]:
- Domain: [tex]\( \boxed{-1 < 2 < 3} \)[/tex]
- Function value: [tex]\( \boxed{f(2) = 0} \)[/tex]
For [tex]\( x = 3 \)[/tex]:
- Domain: [tex]\( \boxed{\text{None}} \)[/tex]
- Function value: [tex]\( \boxed{f(3) = 0} \)[/tex]
These results align with the expected output ([1], 0, [0], 0), confirming the correctness of our analysis.