Answer :

To solve the equation [tex]\(-10 - 4(8 + 6x) = -2(2x + 1)\)[/tex], let's follow these steps:

1. Distribute the constants inside the parentheses:

[tex]\[ -10 - 4(8 + 6x) = -2(2x + 1) \][/tex]

[tex]\[ -10 - (4 \cdot 8) - (4 \cdot 6x) = -2(2x) - 2(1) \][/tex]

Simplify each term:

[tex]\[ -10 - 32 - 24x = -4x - 2 \][/tex]

2. Combine like terms on each side:

On the left side:

[tex]\[ -10 - 32 - 24x = -42 - 24x \][/tex]

So, the equation now looks like:

[tex]\[ -42 - 24x = -4x - 2 \][/tex]

3. Move all terms involving [tex]\(x\)[/tex] to one side and constant terms to the other side:

Add [tex]\(24x\)[/tex] to both sides:

[tex]\[ -42 - 24x + 24x = -4x + 24x - 2 \][/tex]

Simplify:

[tex]\[ -42 = 20x - 2 \][/tex]

Add 2 to both sides to isolate the term involving [tex]\(x\)[/tex]:

[tex]\[ -42 + 2 = 20x - 2 + 2 \][/tex]

[tex]\[ -40 = 20x \][/tex]

4. Solve for [tex]\(x\)[/tex]:

Divide both sides by 20:

[tex]\[ x = \frac{-40}{20} \][/tex]

Simplify:

[tex]\[ x = -2 \][/tex]

Therefore, the solution to the equation [tex]\(-10 - 4(8 + 6x) = -2(2x + 1)\)[/tex] is:

[tex]\[ x = -2 \][/tex]