Use natural logarithms to solve the equation.

[tex]\[ e^{-0.314t} = 7 \][/tex]

The solution set is [tex]\(\{\square\}\)[/tex]. (Simplify your answer. Type an integer or a decimal rounded to the nearest thousandth.)



Answer :

To solve the equation [tex]\( e^{-0.314 t} = 7 \)[/tex] using natural logarithms, follow these steps:

1. Take the natural logarithm of both sides:
This helps isolate the exponential part of the equation.
[tex]\[ \ln(e^{-0.314 t}) = \ln(7) \][/tex]

2. Use the property of logarithms:
Recall that [tex]\(\ln(e^x) = x\)[/tex]. This allows us to simplify the left side of the equation.
[tex]\[ -0.314 t = \ln(7) \][/tex]

3. Solve for [tex]\( t \)[/tex]:
To isolate [tex]\( t \)[/tex], divide both sides by [tex]\(-0.314\)[/tex].
[tex]\[ t = \frac{\ln(7)}{-0.314} \][/tex]

4. Calculate the value:
Evaluating [tex]\(\ln(7)\)[/tex] gives us approximately 1.945910. Now, divide this by [tex]\(-0.314\)[/tex]:
[tex]\[ t \approx \frac{1.945910}{-0.314} \approx -6.197 \][/tex]

So, the solution set is [tex]\( \{ -6.197 \} \)[/tex].