Select the correct answer.

Which expression is equivalent to the given expression? Assume the denominator does not equal zero.

[tex]\frac{12 x^9 y^4}{6 x^3 y^2}[/tex]

A. [tex]2 x^3 y^2[/tex]

B. [tex]\frac{2}{x^6 y^2}[/tex]

C. [tex]\frac{2}{x^3 y^2}[/tex]

D. [tex]2 x^6 y^2[/tex]



Answer :

To simplify the given expression [tex]\(\frac{12 x^9 y^4}{6 x^3 y^2}\)[/tex], follow these steps:

1. Simplify the coefficients:
[tex]\[ \frac{12}{6} = 2 \][/tex]

2. Simplify the exponents of [tex]\(x\)[/tex]:
[tex]\[ \frac{x^9}{x^3} = x^{9-3} = x^6 \][/tex]

3. Simplify the exponents of [tex]\(y\)[/tex]:
[tex]\[ \frac{y^4}{y^2} = y^{4-2} = y^2 \][/tex]

Putting it all together, we get:
[tex]\[ \frac{12 x^9 y^4}{6 x^3 y^2} = 2 x^6 y^2 \][/tex]

Thus, the equivalent expression is:
[tex]\[ 2 x^6 y^2 \][/tex]

The correct answer is:
[tex]\[ \boxed{2 x^6 y^2} \][/tex]

This corresponds to choice D.