Find the sum:
[tex]\[ \sum_{k=8}^{\infty} 6\left(\frac{1}{3}\right)^{k-1} \][/tex]

A. 4.5
B. 1.2
C. 0.004
D. -0.66



Answer :

To find the sum of the infinite series
[tex]\[ \sum_{k=8}^{\infty} 6\left(\frac{1}{3}\right)^{k-1}, \][/tex]
we need to determine whether this series is a geometric series and then apply the appropriate formula for the sum of an infinite geometric series.

### Step-by-Step Solution

1. Identify the components of the geometric series:

- The general form of a geometric series is [tex]\( ar^{n-1} \)[/tex].
- In our series, the first coefficient [tex]\( a \)[/tex] is 6.
- The common ratio [tex]\( r \)[/tex] is [tex]\( \frac{1}{3} \)[/tex].
- The series starts at [tex]\( k=8 \)[/tex].

2. Determine the first term of the series when [tex]\( k = 8 \)[/tex]:

The first term ([tex]\( a_1 \)[/tex]) when [tex]\( k = 8 \)[/tex] can be found by plugging [tex]\( k = 8 \)[/tex] into the general term:
[tex]\[ 6\left(\frac{1}{3}\right)^{8-1} = 6\left(\frac{1}{3}\right)^{7}. \][/tex]
This is the first term of the series.

3. Calculate the value of the first term:

[tex]\[ 6\left(\frac{1}{3}\right)^{7} = 6 \times \left(\frac{1}{2187}\right) = \frac{6}{2187} = 0.0027434842249657054. \][/tex]

4. Apply the formula for the sum of an infinite geometric series:

The sum [tex]\( S \)[/tex] of an infinite geometric series starting from the given first term ([tex]\( a_1 \)[/tex]) is given by:
[tex]\[ S = \frac{a_1}{1 - r} \][/tex]
Using our values:
[tex]\[ S = \frac{0.0027434842249657054}{1 - \frac{1}{3}} = \frac{0.0027434842249657054}{\frac{2}{3}} = 0.004115226337448557. \][/tex]

5. Final Answer:

So, the sum of the infinite series
[tex]\[ \sum_{k=8}^{\infty} 6\left(\frac{1}{3}\right)^{k-1} \][/tex]
is approximately [tex]\( 0.004 \)[/tex].

Thus, the correct answer to the given question is:
[tex]\[ \boxed{0.004} \][/tex]