Using the information in the problem, write the constraints. Let [tex]$x$[/tex] represent the number of hats made, and [tex]$y$[/tex] represent the number of scarves.

1. Total time that can be used on Machine A:
[tex]\[2x + 3y \leq 36\][/tex]

2. Total time that can be used on Machine B:
[tex]\[4x + 4y \leq 42\][/tex]

3. Total time that can be used on Machine C:
[tex]\[2x + y \leq 20\][/tex]

4. Non-negativity constraints:
[tex]\[x \geq 0\][/tex]
[tex]\[y \geq 0\][/tex]

5. Vertices of the feasible region:
[tex]\[(0, 0), (3, 10), (9, 0)\][/tex]

6. Optimization equation (Profit):
[tex]\[ \text{Profit} = px + 4y \][/tex]

Alice's maximum profit is [tex]$\$[/tex] \square[tex]$ per week. She should make $[/tex]\square[tex]$ hats and $[/tex]\square$ scarves each week.



Answer :

Alright, let's fill in the details based on the information given:

### Constraints
1. Total time constraint for Machine A:
[tex]\[ 2 \cdot x + 3 \cdot y \leq 36 \][/tex]

2. Total time constraint for Machine B:
[tex]\[ 4 \cdot y \leq 42 \][/tex]

3. Total time constraint for Machine C:
[tex]\[ 2 \cdot x + y \leq 20 \][/tex]

4. Non-negativity constraints for the number of hats and scarves:
[tex]\[ x \geq 0 \][/tex]
[tex]\[ y \geq 0 \][/tex]

### Vertices of the Feasible Region
- (0, 10.5)
- (3, 8)
- (9, 0)
- (0, 0)

### Optimization Equation
The profit function is:
[tex]\[ \text{Profit} = 5 \cdot x + 4 \cdot y \][/tex]

### Maximum Profit
The given vertices and corresponding profits are:
- At (0, 10.5): [tex]\(\text{Profit} = 5 \cdot 0 + 4 \cdot 10.5 = 42.0\)[/tex]
- At (3, 8): [tex]\(\text{Profit} = 5 \cdot 3 + 4 \cdot 8 = 47\)[/tex]
- At (9, 0): [tex]\(\text{Profit} = 5 \cdot 9 + 4 \cdot 0 = 45\)[/tex]
- At (0, 0): [tex]\(\text{Profit} = 5 \cdot 0 + 4 \cdot 0 = 0\)[/tex]

The maximum profit of [tex]\(\$47\)[/tex] occurs at the point (3, 8).

### Conclusion
Alice's maximum profit is [tex]\(\$47\)[/tex] per week. She should make 3 hats and 8 scarves each week.