The vertex form of the equation of a parabola is [tex]y=(x+5)^2+49[/tex]. What is the standard form of the equation?

A. [tex]y=5x^2+10x+74[/tex]

B. [tex]y=x^2+10x+74[/tex]

C. [tex]y=x^2+49x+35[/tex]

D. [tex]y=x^2+5x+49[/tex]



Answer :

To convert the given equation of a parabola from its vertex form to standard form, we need to follow these steps:

1. Start with the vertex form:
[tex]\[ y = (x + 5)^2 + 49 \][/tex]

2. Expand the squared term [tex]\((x + 5)^2\)[/tex]:
[tex]\[ (x + 5)^2 = x^2 + 10x + 25 \][/tex]

3. Substitute the expanded form back into the equation:
[tex]\[ y = x^2 + 10x + 25 + 49 \][/tex]

4. Combine like terms to simplify the equation:
[tex]\[ y = x^2 + 10x + 25 + 49 \][/tex]
[tex]\[ y = x^2 + 10x + 74 \][/tex]

So the standard form of the equation is:
[tex]\[ y = x^2 + 10x + 74 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{B. \, y = x^2 + 10x + 74} \][/tex]