Let [tex]\theta[/tex] be an angle in quadrant III such that [tex]\cos \theta = -\frac{12}{13}[/tex]. Find the exact values of [tex]\csc \theta[/tex] and [tex]\tan \theta[/tex].

[tex]\csc \theta = [/tex] [tex]\square[/tex]

[tex]\tan \theta = [/tex] [tex]\square[/tex]



Answer :

To find the values of [tex]\(\csc \theta\)[/tex] and [tex]\(\tan \theta\)[/tex] given that [tex]\(\cos \theta = -\frac{12}{13}\)[/tex] and [tex]\(\theta\)[/tex] is in quadrant III, we will follow these steps.

1. Determine [tex]\(\sin \theta\)[/tex]:

Since [tex]\(\theta\)[/tex] lies in quadrant III, both sine and cosine values are negative. We use the Pythagorean identity:

[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]

Given [tex]\(\cos \theta = -\frac{12}{13}\)[/tex], we substitute and solve for [tex]\(\sin^2 \theta\)[/tex]:

[tex]\[ \sin^2 \theta + \left(-\frac{12}{13}\right)^2 = 1 \][/tex]
[tex]\[ \sin^2 \theta + \frac{144}{169} = 1 \][/tex]
[tex]\[ \sin^2 \theta = 1 - \frac{144}{169} \][/tex]
[tex]\[ \sin^2 \theta = \frac{169}{169} - \frac{144}{169} \][/tex]
[tex]\[ \sin^2 \theta = \frac{25}{169} \][/tex]

Therefore,
[tex]\[ \sin \theta = -\sqrt{\frac{25}{169}} \][/tex]

Since [tex]\(\theta\)[/tex] is in quadrant III (where sine is negative),
[tex]\[ \sin \theta = -\frac{5}{13} \][/tex]

2. Find [tex]\(\csc \theta\)[/tex]:

The cosecant function is the reciprocal of the sine function:
[tex]\[ \csc \theta = \frac{1}{\sin \theta} \][/tex]

Substituting the value of [tex]\(\sin \theta\)[/tex],
[tex]\[ \csc \theta = \frac{1}{-\frac{5}{13}} = -\frac{13}{5} \][/tex]

3. Find [tex]\(\tan \theta\)[/tex]:

The tangent function is the ratio of sine to cosine:
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]

Substituting the values of [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex],
[tex]\[ \tan \theta = \frac{-\frac{5}{13}}{-\frac{12}{13}} = \frac{-5}{-12} = \frac{5}{12} \][/tex]

So, the exact values are:

[tex]\[ \csc \theta = -\frac{13}{5} \][/tex]

[tex]\[ \tan \theta = \frac{5}{12} \][/tex]