1. What will the value of the denominator be for this term?

2. In a geometric sequence, [tex]\[S_n = p \left(1 - \left(\frac{1}{2}\right)^n\right)\][/tex] and [tex]\[S_x = 10\][/tex]. Find the value of [tex]\(p\)[/tex].

3. In a geometric sequence, [tex]\[T_n = (4x - 1)^{11}\][/tex].

(a) Find the value(s) of [tex]\(x\)[/tex] for which [tex]\(S_{\infty}\)[/tex] exists.

(b) Choose any value for [tex]\(x\)[/tex] in this interval and calculate [tex]\(S_{\infty}\)[/tex].

4. Show that the sequence [tex]\(1, x + 1, x - 3, \ldots\)[/tex] is not a geometric sequence.

5. The sum of the second and the third terms of a G.P. is 280, and the sum of the 5th and 6th terms is 4375. Find the 4th term.

6. The first three terms of a geometric sequence are [tex]\(4, -2, 1\)[/tex]. Which term in this sequence will have a value of [tex]\(\frac{1}{6}\)[/tex]?

7. Twenty water tanks are decreasing in size in such a way that the volume of each tank is half the volume of the previous tank. The first tank is empty, but the other tanks are full to capacity. Will the first tank be able to hold all the water from the other 19 tanks?

8. The following sequence is given: [tex]\(3, 3, 9, 6, 15, 12, \ldots\)[/tex]. Find the pattern.



Answer :

Sure! I'll address each math problem in sequence and provide a step-by-step solution.

### Problem 3
Solve for [tex]\( p \)[/tex] given [tex]\( S_n = p\left(1 - \left(\frac{1}{2}\right)^1\right) \)[/tex] and [tex]\( S_x = 10 \)[/tex].

### Solution:
[tex]\[ S_n = p \left(1 - \left(\frac{1}{2}\right)\right) \][/tex]
Since [tex]\( \left(\frac{1}{2}\right)^1 = \frac{1}{2} \)[/tex], we have:
[tex]\[ S_n = p \left(1 - \frac{1}{2}\right) \][/tex]
[tex]\[ S_n = p \left(\frac{1}{2}\right) \][/tex]
We know [tex]\( S_x = 10 \)[/tex]:
[tex]\[ 10 = p \left(\frac{1}{2}\right) \][/tex]
Solve for [tex]\( p \)[/tex]:
[tex]\[ p = 10 \times 2 \][/tex]
[tex]\[ p = 20 \][/tex]

### Problem 4
Consider [tex]\( T_n = (4x - 1)^{11} \)[/tex].

#### (a) Find the value(s) of [tex]\( x \)[/tex] for which [tex]\( S_{\infty} \)[/tex] exists.

### Solution:
For a geometric series [tex]\( S_{\infty} \)[/tex] to exist, the common ratio, [tex]\( r \)[/tex], must satisfy [tex]\( |r| < 1 \)[/tex].

Given that [tex]\( T_n = (4x - 1)^{11} \)[/tex], consider the base [tex]\( r = 4x - 1 \)[/tex].

For [tex]\( |r| < 1 \)[/tex]:
[tex]\[ |4x - 1| < 1 \][/tex]
Solve the inequality:
[tex]\[ -1 < 4x - 1 < 1 \][/tex]
Add 1 to all parts:
[tex]\[ 0 < 4x < 2 \][/tex]
Divide by 4:
[tex]\[ 0 < x < \frac{1}{2} \][/tex]

The values of [tex]\( x \)[/tex] for which [tex]\( S_{\infty} \)[/tex] exists are [tex]\( 0 < x < \frac{1}{2} \)[/tex].

#### (b) Choose any value for [tex]\( x \)[/tex] in this interval and calculate [tex]\( S_{\infty} \)[/tex].

Choose [tex]\( x = \frac{1}{4} \)[/tex], then:
[tex]\[ r = 4\left(\frac{1}{4}\right) - 1 = 1 - 1 = 0 \][/tex]
For the series with common ratio [tex]\( r = 0 \)[/tex], [tex]\( S_{\infty} \)[/tex] formula:
[tex]\[ S_{\infty} = \frac{a}{1 - r} \][/tex]
Since the ratio is zero, any series sum would collapse based on the non-existence of geometric progression with [tex]\( r = 0 \)[/tex].

### Problem 5
Show that the sequence [tex]\( 1, x+1, x-3, \ldots \)[/tex] is not a geometric sequence.

### Solution:
For the sequence to be geometric, the ratio between successive terms must be constant.

Let's assume it is geometric with common ratio [tex]\( r \)[/tex].
[tex]\[ r = \frac{x + 1}{1} = x + 1 \][/tex]
[tex]\[ r = \frac{x - 3}{x + 1} \][/tex]

Equate both expressions:
[tex]\[ x + 1 = \frac{x - 3}{x + 1} \][/tex]
Cross multiply:
[tex]\[ (x + 1)^2 = x - 3 \][/tex]
[tex]\[ x^2 + 2x + 1 = x - 3 \][/tex]
[tex]\[ x^2 + x + 4 = 0 \][/tex]

The above is a contradiction, hence the sequence is not geometric.

### Problem 6
The sum of the second and third terms of a G.P. is 280, and the sum of the fifth and first is 4375. Find the fourth term.

### Solution:
Let the first term be [tex]\( a \)[/tex] and the common ratio be [tex]\( r \)[/tex].

Second term: [tex]\( ar \)[/tex]
Third term: [tex]\( ar^2 \)[/tex]
Fifth term: [tex]\( ar^4 \)[/tex]

Given:
[tex]\[ ar + ar^2 = 280 \quad \text{(1)} \][/tex]
[tex]\[ a + ar^4 = 4375 \quad \text{(2)} \][/tex]

From (1):
[tex]\[ ar(1 + r) = 280 \][/tex]
From (2):
[tex]\[ a(1 + r^4) = 4375 \][/tex]
Solve the simultaneous equations for [tex]\( a \)[/tex] and [tex]\( r \)[/tex].

Express [tex]\( ar \)[/tex] from (1):
[tex]\[ ar = \frac{280}{1 + r} \][/tex]
Substitute [tex]\( ar \)[/tex] in (2):
[tex]\[ a + \frac{280 r^3}{1 + r} = 4375 \][/tex]

Solve for [tex]\( a \)[/tex]:
[tex]\[ a(1 + r^4) = 4375 \][/tex]

Fourth term:
[tex]\[ ar^3 = \text{Formula to be solved in constraint derived above}.\][/tex]

### Problem 7
The first three terms are [tex]\( 4, -2, 1 \)[/tex]. Which term in the sequence will have a value of [tex]\( \frac{1}{6} \)[/tex]?

### Solution:
First term: [tex]\( a = 4 \)[/tex]
Common ratio: [tex]\( r = \frac{-2}{4} = -\frac{1}{2} \)[/tex]

General term:
[tex]\[ T_n = ar^{n-1} \Rightarrow 4 \left(-\frac{1}{2}\right)^{n-1} = \frac{1}{6} \][/tex]
Solve:
[tex]\[ \left(-\frac{1}{2}\right)^{n-1} = \frac{1}{24} \][/tex]

### Problem 8
Twenty water tanks decreasing in size translating to held volumes.

### Solution:
If [tex]\( V \)[/tex]'s are volumes in GP [tex]\( tanks... Handling continuity. ### Problem 9 Sequence of \( 3, 3; 9: 6: 15: 12: \ldots \)[/tex]

Odd/even number pattern separation and observation detail.
```
Mixed number patterns needing matching set analysis.

Every detailed continuity extended accordingly…