Select the correct answer.

Which expression is equivalent to the given expression?
[tex]\[ \frac{\left(3 m^2 n\right)^3}{m n^4} \][/tex]

A. [tex]\(\frac{9 m^5}{n}\)[/tex]

B. [tex]\(9 m^4 n\)[/tex]

C. [tex]\(\frac{27 m^5}{n}\)[/tex]

D. [tex]\(27 m^4 n\)[/tex]



Answer :

To simplify the given expression [tex]\(\frac{\left(3 m^2 n\right)^3}{m n^4}\)[/tex], we will follow a step-by-step process.

First, let's break down the numerator [tex]\((3 m^2 n)^3\)[/tex]:
[tex]\[ (3 m^2 n)^3 = 3^3 \cdot (m^2)^3 \cdot n^3 \][/tex]
Now calculate each part separately:
[tex]\[ 3^3 = 27 \][/tex]
[tex]\[ (m^2)^3 = m^{2 \times 3} = m^6 \][/tex]
[tex]\[ n^3 = n^3 \][/tex]
So the numerator becomes:
[tex]\[ 27 m^6 n^3 \][/tex]

Next, let's look at the denominator [tex]\(m n^4\)[/tex]:
[tex]\[ m n^4 \][/tex]
So the expression now looks like:
[tex]\[ \frac{27 m^6 n^3}{m n^4} \][/tex]

To simplify, divide the terms with the same base:
[tex]\[ \frac{27 m^6 n^3}{m^1 n^4} \][/tex]

This can be written as:
[tex]\[ 27 \cdot \frac{m^6}{m^1} \cdot \frac{n^3}{n^4} \][/tex]

Simplify each fraction:
[tex]\[ \frac{m^6}{m^1} = m^{6-1} = m^5 \][/tex]
[tex]\[ \frac{n^3}{n^4} = n^{3-4} = n^{-1} = \frac{1}{n} \][/tex]

Combine these results together:
[tex]\[ 27 \cdot m^5 \cdot \frac{1}{n} = \frac{27 m^5}{n} \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{\frac{27 m^5}{n}} \][/tex]